光学薄膜吸收及其测量
在光学领域,光学薄膜是一种被广泛应用的重要材料,其吸收特性对于薄膜的性能与应用效果有着关键影响。光学薄膜吸收是指当光波透过或被光学薄膜材料吸收时,光能转化为热能或其他形式能量的现象。深入理解光学薄膜吸收的原理、影响因素、测量方法及应用等,对于光学薄膜的研究与应用具有重要意义。

一、光学薄膜吸收的产生原因
光学薄膜吸收主要有以下几种原因:
其一,材料本征吸收。当入射光的频率与光学薄膜材料内部的电子、原子或分子的固有振荡频率相匹配时,光子会被材料的微观粒子吸收,引起这些粒子的能级跃迁,从而将光能转化为其他形式的能量。
其二,杂质吸收。在光学薄膜材料的制备过程中,难免会引入一些杂质原子或离子。这些杂质的存在会改变材料的能级结构,当光子能量与杂质能级差相符合时,杂质就会吸收光子,导致光能被吸收。
其三,缺陷吸收。光学薄膜材料中的晶格缺陷,如空位、间隙原子、位错等,也会成为吸收中心。这些缺陷会扰乱材料正常的周期性结构,导致电子云分布改变,使得某些波长的光容易被吸收。
二、光学薄膜吸收对光学系统的影响
光学薄膜吸收对光学系统有着多方面的影响。一方面,会降低光学透过率。对于透射型光学薄膜,如增透膜,吸收会使实际能够透过薄膜的光量减少,降低了光学系统的透光效率,影响光学元件的成像质量或光信号的传输效果。另一方面,会影响光学元件性能。在反射型光学薄膜中,如高反膜,吸收会导致反射光的强度和相位发生变化,这会破坏光学系统中对于反射光的精确要求,例如在激光谐振腔中的高反镜,如果存在吸收,会使激光的反射效率下降,进而影响激光的输出功率和稳定性。
三、光学薄膜吸收的应用
光学薄膜吸收并非完全是有害的,其在一些领域也有着重要的应用价值。在光通信领域,通过控制光学薄膜的吸收特性,可以实现对光信号的调制与控制。例如,利用特定波长的选择性吸收可以实现波分复用技术,将不同波长的光信号在一根光纤中同时传输,从而提高光通信的容量和效率。在光电器件中,如太阳能电池的减反射膜,适当设计光学薄膜的厚度和材料,使其对太阳光谱中特定波段的光具有较低的反射率和一定的吸收率,以提高太阳能电池对光的吸收和转换效率,进而提升太阳能电池的性能。
四、光学薄膜吸收的测量
为了精确地测量光学薄膜的吸收情况,可以使用专业的设备,如PLI弱吸收测试仪。该设备基于热透镜效应,对激光光学元件的弱吸收具有高灵敏度。它利用一束泵浦激光照射样品待测区域,该区域由于热透镜效应从而产生表面形变分布或体内折射率梯度分布。同时采用另一束探测激光照射在样品同一区域,透射过样品的探测光光热信号包含表面形变或折射率变化的振幅和相位等信息。光热信号由光电探测器收集,通过探测光中心光强的变化表征,光热信号再经锁相放大器转换为可分析处理的电信号,最终计算得到被测样品的吸收值。其泵浦光源有1064nm光纤激光器和355nm激光器可供选择,探测光源为He-Ne激光,测量精度高达1ppm,可适用于不同尺寸和形状的样品,能够实现一维深度逐点扫描以及一次性进行表面(膜层)吸收和体(基板)吸收的区分测量等,为光学薄膜吸收的研究与质量控制提供了有力的技术支持。
光学薄膜吸收是一个复杂而重要的光学现象,它在光学领域有着深远的影响和广泛的应用。通过深入研究其产生原因、影响因素以及测量方法,可以更好地利用和控制光学薄膜的吸收特性,为光学技术的发展和应用提供更坚实的理论基础和技术保障。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
