【光学前沿】纯四次孤子分子中的多平衡态研究取得新进展
光孤子作为一种具有不变传播性质的类粒子实体,在非线性科学领域占据着极为重要的地位。长期以来,时间孤子的研究主要聚焦于二阶色散主导的范畴,高阶色散则常被忽略或视为扰动因素。然而,近年来,科研人员发现了一种新型脉冲——pure-quarticsolitons(纯四次孤子),它由自相位调制与纯偶数高阶色散效应之间的平衡所产生,展现出独特的能量宽度标度关系,极大地拓宽了人们对时间孤子定义、分类及实用性的认知。

孤子分子作为有界的多脉冲结构,因其在提高光通信传输容量方面所蕴含的巨大潜力,成为激光物理学领域的热门课题。其内部动力学行为源自组成孤子间的非线性相互作用。纯四次孤子的振荡尾部能够在分离良好的脉冲之间建立势垒,阻止它们聚结,为形成孤子结合结构提供了新的潜在机制。
在这一背景下,Deng等人深入研究了纯四次孤子双重态和三重态中的平衡态情况。研究人员通过理论分析,成功预测并识别了稳定态和不稳定态之间交替的离散平衡分离序列,并构建了控制多个四次孤子分子的纯四次孤子模型框架。该框架能够实现对固定纯四次孤子分子层次结构的理解,允许按需混合相邻纯四次孤子之间的任意阶平衡分离和相对相。
在研究方法上,当四阶色散β4占主导地位而二阶色散消失时,脉冲轮廓A(z,t)随距离z和时间t的演化可用广义非线性薛定谔方程来描述。研究人员求解了该方程的稳态单脉冲解,得到了纯四次孤子的轮廓,并详细分析了其随参数变化的特性。基于孤子微扰的绝热理论,进一步研究了孤子分子内光学键的特性,推导出有效结合潜力,从而预测平衡位置。
研究结果表明,在反相(相对相位φ=π)和同相(φ=0)情况下,纯四次孤子分子存在交替的稳定和不稳定平衡态。例如,在反相双峰中,初始分离小于4.5ps的轨迹在平衡点周围表现出小尺度振荡,形成稳定态,而靠近红色虚线的轨迹则发散,为不稳定平衡。同相情况下,平衡位置与反相相同,但稳定性相反。结合能随间距呈指数衰减,只有少数平衡具有物理意义。稳定平衡表现为对红线以上初始分离的吸引力,否则不稳定,且高阶态更容易受扰动影响。
此外,研究人员还探讨了构成多个纯四次孤子的大分子的可能性。通过指定前一个纯四次孤子的相位和位置,后续纯四次孤子由同相或反相的平衡分离确定。以四个和五个纯四次孤子分子为例,验证了长链分子的稳定传播,表明通过这种方式构建的长链分子可以稳定存在。
该研究不仅加深了人们对纯四次孤子之间相互作用及纯四次孤子分子内在动力学的基本理解,而且为操纵非线性光学中的光孤子化合物(如大分子、晶体等)提供了新途径,有望推动光通信等领域的发展。
刘军副教授是该研究的主要人员之一,其来自深圳大学微纳光电子学研究院,长期致力于新型激光技术及光孤子动力学的研究。
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
