天津大学在激光模式调控领域取得重要研究进展:基于离轴泵浦技术实现厄米拉盖尔高斯全空间任意模式激光高效生成
高阶激光模式的精准调控具有关键科学意义与应用价值。天津大学姚建铨院士、史伟教授课题组在《中国激光》发表的最新研究成果,通过创新性结合离轴泵浦技术与像散腔设计,首次实现了厄米拉盖尔高斯(HLG)全空间任意模式激光的高效生成,为复杂结构光场的可控操纵提供了全新技术路径。
一、传统技术局限与二维激发困境
高阶厄米高斯(HG)模式光场因其独特的相位拓扑结构,在量子态制备、引力波探测精密计量及高速光通信网络构建中发挥着不可替代的作用。传统离轴泵浦技术虽能通过泵浦光轴向偏移实现高阶HG模式激发,但其受限于谐振腔圆柱对称性,仅能完成一维模式调控(如HG<sub>m,0</sub>或HG<sub>0,n</sub>)。即便在正交方向引入二维泵浦偏移,倾斜一维模式因能量分布集中导致的竞争效应,仍使得二维HG<sub>m,n</sub>模式稳定输出成为难题。
现有解决方案如多路泵浦调制、腔内柱透镜变换等,普遍面临系统复杂度高、能量转换效率低下(<1%)及模式阶数受限等瓶颈。例如,基于数字微镜阵列的有源调制方法最高仅能产生HG<sub>27,25</sub>模式,而无源空间光调制技术的极限为HG<sub>25,25</sub>模式,难以满足实际应用对高功率、高阶模式激光的需求。
二、核心创新:像散腔对称性破缺与二维模式激发
针对上述挑战,研究团队提出通过引入像散效应打破谐振腔圆柱对称性的创新思路,重构本征模式选择规则。设计的折叠腔结构(图1)利用凹面折叠镜在子午面与弧矢面的焦距差异引入可控像散,相较传统柱面光学元件,可通过调节折叠角实现像散程度的动态调控,显著提升系统灵活性。

当像散作用使谐振腔本征模限定于笛卡尔坐标系x、y轴方向时,倾斜一维模式因无法满足自再现条件被有效抑制,二维离轴泵浦得以直接激发二维HG<sub>m,n</sub>模式。实验中通过精密位移台调控泵浦光在x、y轴方向的偏移量(Δx/Δy),成功实现双模式序数(m/n)的独立可控激发。当泵浦光偏移量达1.9mm(~13.6倍基模光斑半径)时,实现HG<sub>214,216</sub>超高阶模式输出,其阈值低至1.74W,斜效率达13.4%,刷新了主动方法生成高阶模式激光的世界纪录。
三、实验验证:全维度模式调控的理论与实证
实验结果表明,泵浦光偏移量与模式阶次呈现显著正相关性(图2)。当Δx=Δy=0时,输出为基模HG<sub>0,0</sub>;随偏移量递增,依次观测到HG<sub>1,1</sub>、HG<sub>3,3</sub>直至HG<sub>214,216</sub>等系列模式。值得关注的是,该方法支持非对称偏移(Δx≠Δy)场景下非对称HG<sub>m,n</sub>模式的生成,进一步拓展了模式调控维度。

理论计算与实验结果高度吻合,基于交叠积分的模式选择模型精准预测了光斑分布特性。通过像散变换机制,HG模式可高效转换为拉盖尔高斯(LG)模式,从而构建了覆盖HLG全空间的任意模式调控平台,实现从低阶到超高阶、从HG到LG模式的无缝切换。
四、科学意义与应用前景
本研究成果在以下维度展现出重要价值:
方法创新:无需复杂空间调制元件,仅通过离轴泵浦与像散调控实现高效模式激发,为低成本、高稳定性结构光场生成提供了新范式。
领域拓展:在量子信息领域,超高阶HLG模式可提升量子态容量与通信信道复用效率;在激光微纳加工中,精准可控的高阶模式有望优化加工精度与能量利用率;在精密测量领域,其稳定相位结构可为下一代引力波探测提供理想光源。
系统兼容:折叠腔结构具备良好的工程兼容性,可便捷集成至现有固体激光系统。研究团队在Nd:YVO<sub>4</sub>激光器1064nm波段的成功验证,为中红外、紫外等波段的拓展研究奠定了技术基础。
五、结论与展望
该研究首次实现了二维HG<sub>m,n</sub>超高阶模式激光的高效生成,突破了传统离轴泵浦技术的一维调控局限,为HLG全空间模式的任意选择与调控提供了简单高效的解决方案。实验中观测到的横纵模频率简并现象,结合可控像散技术,为复杂光场调控自由度的拓展提供了新方向。
未来,研究团队将聚焦多模式复用、动态模式切换等关键技术,致力于构建可编程智能光场调控系统。同时,结合超快激光与非线性光学过程,探索该平台在光孤子传输、光学神经网络等前沿领域的应用潜力。本成果不仅标志着我国在激光模式调控领域的国际领先地位,更为光学工程、量子科技等战略领域提供了重要技术储备,有望推动“按需定制光场”技术的跨越式发展。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
