【前沿资讯】突破光频域反射技术瓶颈:解析光源调谐误差补偿新路径
在现代科技蓬勃发展的浪潮中,分布式光纤应变传感技术凭借独特优势,成为众多关键领域的“得力助手”。其中,光频域反射(OFDR)技术以高空间分辨率和大动态范围脱颖而出,在航空航天领域助力监测飞行器结构健康状况、在医疗介入器械中实现精准定位与操作、在土木工程里保障大型建筑和桥梁的安全稳固,应用前景极为广阔。然而,一项关键难题却如影随形,严重制约着OFDR技术进一步施展拳脚,那便是可调谐激光光源的非理想调谐问题。
在实际复杂的工况环境下,可调谐激光光源就像一个“脆弱的舞者”,极易受到温度、电压波动等系统随机因素干扰,导致输出相位难以维持稳定的线性啁啾,调谐速率也变得飘忽不定。这看似微小的变化,却在OFDR系统中掀起“惊涛骇浪”。原本清晰稳定的单频干涉信号,因光源非理想调谐而变得模糊、展宽,如同原本精准的导航信号出现偏差,使得OFDR系统的性能大打折扣,应变解调精度难以保证。
南方科技大学沈平教授、党竑副研究员团队敏锐地捕捉到这一关键问题,展开深入研究。为了精准剖析激光光源相位噪声对OFDR应变解调的影响,团队建立了专业的光源相位调谐模型。通过对可调谐激光光源可能出现的各种非理想调谐形式进行细致分析,并结合实际测量的光源相位调谐曲线,进行大量仿真实验。
研究发现,相位非理想调谐主要包含多项式非理想调谐和随机相位抖动两种形式。当拟合多项式幅度增加时,应变测量的“精准度大厦”开始动摇,定位精度首当其冲受到影响,接着应变计算结果也出现偏差。一旦多项式幅度的α值超过0.125rad,分布式应变测量误差就会突破4%,并且随着α值增大不断攀升。而随机相位抖动同样不容小觑,当抖动幅度大于0.3rad后,对测量精度的影响超过3%,严重干扰测量结果的准确性。
为了弥补这一性能“缺口”,团队尝试了多种补偿方法。传统的利用辅助干涉仪插值重采样的常规补偿方法,在应对多项式非理想调谐时,能发挥一定作用,它可以有效补偿因多项式非理想调谐形式所引起的信号展宽,就像给模糊的图像进行了初步修复。但这种方法并非“万能钥匙”,它无法彻底消除对定位结果的影响,面对光源初始相位随机抖动时更是“束手无策”,难以从根本上解决精度退化问题。
在此困境下,团队另辟蹊径,将目光投向深度学习领域。经过探索,他们发现利用卷积神经网络模型,如Unet模型,对插值结果进行二次补偿,能带来意想不到的效果。从实验数据对比来看,深度学习二次补偿后的定位误差和应变计算误差大幅降低,分布式应变测量结果的误差从非理想调谐的31.03%锐减至2.69%,远远优于插值补偿,使测量结果更接近理想值,为解决光源非理想调谐问题提供了新的思路和方法。
这项研究成果意义非凡。从理论层面深入剖析了光源非理想调谐误差的影响机制,丰富了光纤传感技术的理论体系;在实际应用中,为优化OFDR系统性能提供了可行方案,有助于推动其在更多领域实现高精度测量,让分布式光纤应变传感技术能够更好地服务于社会发展和科技创新,为相关行业的技术升级注入强劲动力。
-
低密度等离子体棱镜压缩器取得突破,突破传统光学限制,赋能超高功率激光技术
激光技术的迅猛发展,持续推动着人类对极端物理现象的探索,而拍瓦级及更高功率的激光装置,更是解开高能物理、相对论光学等领域奥秘的关键工具。然而,传统激光脉冲压缩技术长期受限于光学元件的损伤阈值,成为制约激光功率提升的核心瓶颈。近日,美国密歇根大学、罗切斯特大学等机构的科研人员联合研发出基于低密度等离子体棱镜的新型脉冲压缩器,为突破这一限制带来革命性进展,相关成果发表于《HighPower Laser Scienceand Engineering》。
2025-08-18
-
从光斑到清晰成像,光学系统如何突破"模糊"极限?
当我们透过镜头观察世界时,那些清晰的图像背后,藏着光的衍射与数学模型的复杂博弈。为何遥远的恒星在望远镜中会变成光斑?光学系统如何传递图像的细节?从艾里斑到调制传递函数,这些关键概念正是解开"模糊"谜题的钥匙。
2025-08-18
-
粉末增材制造技术在掺铒石英光纤激光器中的应用研究
在光纤通信、激光加工及生物医疗等关键领域,高性能光纤激光器的需求持续攀升,而增益光纤作为其核心构成部件,其制造工艺直接决定器件的性能水平。传统制造方法虽能生产高质量增益光纤,但存在生产周期冗长、成本高昂及成分调控灵活性不足等显著局限。近期,PawelManiewski等人在《Optica》期刊发表的研究成果,提出了一种基于粉末增材制造的新型制备方案,为高性能增益光纤的研发开辟了全新路径。
2025-08-18
-
偏心仪在透镜及镜片加工中的应用解析
偏心仪在透镜及镜片加工领域中应用广泛,其核心作用在于通过精密检测与校准,确保光学元件的几何中心与光轴保持高度一致性,进而保障光学系统的成像质量与性能稳定性。具体应用如下:
2025-08-15