南开大学在螺旋锥形光束研究中取得重要突破为微纳操控技术提供新工具
近日,南开大学许东野教授团队在结构光场调控领域取得重要进展,其关于螺旋锥形光束(Helico-ConicalBeams,HCBs)生成与重构的研究成果发表于国际光学权威期刊《ChineseOpticsLetters》。这项突破通过创新的光学干涉技术,实现了复杂光场的精准操控,为微纳粒子操纵、纳米制造等前沿领域提供了关键技术支撑。
一、螺旋锥形光束的基础理论与独特属性
自2005年首次报道以来,螺旋锥形光束因其独特的相位耦合特性在结构光场领域备受关注。该光束由螺旋相位与锥形相位函数的乘积生成,其相位分布可表示为:
其中,(r,θ)为极坐标,l为拓扑荷,r_0为径向归一化因子,K为常数(取0或1)。与拉盖尔-高斯光束、贝塞尔-高斯光束等传统涡旋光束不同,螺旋锥形光束的径向相位分量Φr(r)与角向相位分量Φa(θ)不可分离,这种耦合特性赋予其独特的手性传播动力学与光场分布特征——当K=1时,焦平面呈现完整螺旋强度图案;当K=0时,则形成截断螺旋结构。其不可分离的相位特性使其在粒子捕获、纳米结构加工等需要多维光场调控的场景中展现出显著优势。
二、核心技术突破:用干涉"编织"复杂光场图案
研究团队的关键创新在于开发了基于复振幅调制的光学干涉技术,能够在螺旋轨迹上"编织"出精细的干涉条纹。通过叠加不同"拓扑荷"(描述光场螺旋特性的参数)的光束,可精确控制条纹数量与形态:
当两种同符号拓扑荷光束干涉时,会因相位梯度同向出现"断裂点",形成较模糊的条纹;
而反符号拓扑荷光束干涉时,相位梯度反向作用会生成更清晰精细的条纹,如同用两股相反方向的力量拧出更紧密的"光绳"。
进一步通过调制相位函数,团队实现了三种创新性光场重构模式:
指数收缩模式:让螺旋开口逐渐闭合,最终转化为环状光场;
正弦对称模式:生成对称收缩的"C"型等特殊轨迹;
啁啾振荡模式:在螺旋轨迹上创造折叠分段结构,实现复杂曲线的自由设计。
实验中,团队利用空间光调制器等设备,成功生成了"龙卷风""海浪""蝴蝶"等复杂光场图案,展现了该技术在光场形态设计上的强大灵活性。
三、从实验室到应用:开启微纳技术新维度
这项技术的突破为多个关键领域带来了实际应用前景:
生物医学领域:可定制化设计光场陷阱,像"光镊子"一样精准捕获和输运单个细胞或纳米颗粒,为细胞操作、药物载体定向输送提供全新工具;
纳米制造领域:利用螺旋轨迹的精细条纹,能在材料表面刻写出微米级甚至纳米级的复杂结构,推动超表面、光子芯片等精密器件的制造;
精密测量领域:基于其独特的手性传播特性,可开发高灵敏度传感器,用于微尺度旋转角度、材料折射率等参数的高精度测量。
四、研究意义:搭建基础光学与工程应用的桥梁
许东野团队的研究不仅深化了对复杂光场物理机制的理解,更重要的是建立了从理论设计到实际应用的完整技术链条。通过将数学上的相位调控理论转化为可操作的光学实验方法,该成果展现了基础研究向工程技术转化的可能性。
随着后续对光场与物质相互作用的深入研究,螺旋锥形光束的可重构技术有望成为微纳制造、生物检测、量子信息等领域的共性关键技术,推动光学工程与生命科学、材料科学等学科的交叉融合,为下一代精密测量与操控技术奠定重要基础。
目前,相关研究成果已发表于《ChineseOpticsLetters》2024年第22卷第9期,引发国际光学领域的广泛关注。南开大学团队表示,将继续探索结构光场在更多实际场景中的应用潜力,推动科研成果向产业转化。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30