加州大学伯克利分校研发“Oz”技术创造全新饱和色“olo”,突破人类自然色觉限制
一、技术核心:精准操控视锥细胞,超越自然光谱局限
人类视网膜中的三种视锥细胞(S、M、L)分别感知蓝、绿、红波长,但因进化导致M(绿)和L(红)视锥细胞的敏感波长高度重叠(85%重叠),自然界中不存在仅激活M视锥细胞的单色光,限制了人类对高饱和绿色的感知。
Oz技术通过以下步骤突破这一限制:
1.绘制个体视锥细胞图谱:利用高精度光学系统成像视网膜,识别每个S、M、L视锥细胞的位置。
2.激光精准刺激:通过微小激光脉冲单独激活目标视锥细胞(一次可控制约1000个),无需依赖自然波长。例如,聚焦激活M视锥细胞为主,辅以少量S或L视锥细胞,生成自然界中不存在的超高饱和蓝绿色“olo”,其饱和度远超普通单色光。
二、新颜色“olo”:感官体验与科学意义
视觉特性:被描述为“孔雀绿”或“饱和度极高的蓝绿色”,研究参与者称其比最鲜艳的自然色更震撼。
科学突破:首次通过人工手段绕过波长限制,直接操控视锥细胞组合,证明人类色觉可超越自然光谱范围。
三、技术应用:从基础研究到医疗前景
1.视觉机制探索:
解答色觉本质问题,例如单独激活M视锥细胞是否能产生“最纯的绿色”。
研究大脑如何处理非自然感官输入(如“olo”),拓展对人类视觉皮层可塑性的认知。
2.眼科疾病研究:
模拟视锥细胞丢失过程,研究视网膜退化疾病(如黄斑变性)的机制。
探索为色盲患者恢复全色视觉的可能,通过精准刺激补偿缺陷视锥细胞。
3.未来愿景:
实现“四色视觉”:理论上可通过刺激第四种人工视锥细胞(如改造现有细胞),让人类感知更宽广的色域。
开发“细胞级视觉接口”:不依赖外部图像投射,直接通过刺激视锥细胞生成高分辨率图像(如移动点、婴儿/鱼的图像)。
四、技术原理与实现过程
激光与算法结合:
1.软件将目标图像(如彩色照片)转化为视锥细胞激活方案,计算需要刺激的S/M/L细胞组合。
2.低能量激光束快速扫描视网膜,仅在目标细胞位置发射脉冲,避免损伤周围细胞。
安全性:使用微剂量激光,能量远低于损伤阈值,初期实验未发现副作用。
五、研究团队与发表信息
该研究由加州大学伯克利分校赫伯特·沃特海姆视光学与视觉科学学院团队主导,联合华盛顿大学开发视网膜成像技术,相关成果发表于《科学进展》(ScienceAdvances)。研究人员表示,Oz技术为视网膜研究提供了前所未有的单细胞尺度操控工具,不仅解锁新颜色,更开启了理解人类视觉极限的新维度。
Oz技术标志着人类从“被动接受自然光谱”到“主动设计视觉体验”的跨越,不仅在色彩科学上具有革命性,更在医学、神经科学领域展现出广阔应用潜力。随着技术成熟,未来或可改写视觉障碍治疗范式,甚至重新定义人类对“颜色”的认知边界。
-
低密度等离子体棱镜压缩器取得突破,突破传统光学限制,赋能超高功率激光技术
激光技术的迅猛发展,持续推动着人类对极端物理现象的探索,而拍瓦级及更高功率的激光装置,更是解开高能物理、相对论光学等领域奥秘的关键工具。然而,传统激光脉冲压缩技术长期受限于光学元件的损伤阈值,成为制约激光功率提升的核心瓶颈。近日,美国密歇根大学、罗切斯特大学等机构的科研人员联合研发出基于低密度等离子体棱镜的新型脉冲压缩器,为突破这一限制带来革命性进展,相关成果发表于《HighPower Laser Scienceand Engineering》。
2025-08-18
-
从光斑到清晰成像,光学系统如何突破"模糊"极限?
当我们透过镜头观察世界时,那些清晰的图像背后,藏着光的衍射与数学模型的复杂博弈。为何遥远的恒星在望远镜中会变成光斑?光学系统如何传递图像的细节?从艾里斑到调制传递函数,这些关键概念正是解开"模糊"谜题的钥匙。
2025-08-18
-
粉末增材制造技术在掺铒石英光纤激光器中的应用研究
在光纤通信、激光加工及生物医疗等关键领域,高性能光纤激光器的需求持续攀升,而增益光纤作为其核心构成部件,其制造工艺直接决定器件的性能水平。传统制造方法虽能生产高质量增益光纤,但存在生产周期冗长、成本高昂及成分调控灵活性不足等显著局限。近期,PawelManiewski等人在《Optica》期刊发表的研究成果,提出了一种基于粉末增材制造的新型制备方案,为高性能增益光纤的研发开辟了全新路径。
2025-08-18
-
偏心仪在透镜及镜片加工中的应用解析
偏心仪在透镜及镜片加工领域中应用广泛,其核心作用在于通过精密检测与校准,确保光学元件的几何中心与光轴保持高度一致性,进而保障光学系统的成像质量与性能稳定性。具体应用如下:
2025-08-15