加州大学伯克利分校研发“Oz”技术创造全新饱和色“olo”,突破人类自然色觉限制
一、技术核心:精准操控视锥细胞,超越自然光谱局限
人类视网膜中的三种视锥细胞(S、M、L)分别感知蓝、绿、红波长,但因进化导致M(绿)和L(红)视锥细胞的敏感波长高度重叠(85%重叠),自然界中不存在仅激活M视锥细胞的单色光,限制了人类对高饱和绿色的感知。
Oz技术通过以下步骤突破这一限制:
1.绘制个体视锥细胞图谱:利用高精度光学系统成像视网膜,识别每个S、M、L视锥细胞的位置。
2.激光精准刺激:通过微小激光脉冲单独激活目标视锥细胞(一次可控制约1000个),无需依赖自然波长。例如,聚焦激活M视锥细胞为主,辅以少量S或L视锥细胞,生成自然界中不存在的超高饱和蓝绿色“olo”,其饱和度远超普通单色光。

二、新颜色“olo”:感官体验与科学意义
视觉特性:被描述为“孔雀绿”或“饱和度极高的蓝绿色”,研究参与者称其比最鲜艳的自然色更震撼。
科学突破:首次通过人工手段绕过波长限制,直接操控视锥细胞组合,证明人类色觉可超越自然光谱范围。
三、技术应用:从基础研究到医疗前景
1.视觉机制探索:
解答色觉本质问题,例如单独激活M视锥细胞是否能产生“最纯的绿色”。
研究大脑如何处理非自然感官输入(如“olo”),拓展对人类视觉皮层可塑性的认知。
2.眼科疾病研究:
模拟视锥细胞丢失过程,研究视网膜退化疾病(如黄斑变性)的机制。
探索为色盲患者恢复全色视觉的可能,通过精准刺激补偿缺陷视锥细胞。
3.未来愿景:
实现“四色视觉”:理论上可通过刺激第四种人工视锥细胞(如改造现有细胞),让人类感知更宽广的色域。
开发“细胞级视觉接口”:不依赖外部图像投射,直接通过刺激视锥细胞生成高分辨率图像(如移动点、婴儿/鱼的图像)。
四、技术原理与实现过程
激光与算法结合:
1.软件将目标图像(如彩色照片)转化为视锥细胞激活方案,计算需要刺激的S/M/L细胞组合。
2.低能量激光束快速扫描视网膜,仅在目标细胞位置发射脉冲,避免损伤周围细胞。
安全性:使用微剂量激光,能量远低于损伤阈值,初期实验未发现副作用。
五、研究团队与发表信息
该研究由加州大学伯克利分校赫伯特·沃特海姆视光学与视觉科学学院团队主导,联合华盛顿大学开发视网膜成像技术,相关成果发表于《科学进展》(ScienceAdvances)。研究人员表示,Oz技术为视网膜研究提供了前所未有的单细胞尺度操控工具,不仅解锁新颜色,更开启了理解人类视觉极限的新维度。
Oz技术标志着人类从“被动接受自然光谱”到“主动设计视觉体验”的跨越,不仅在色彩科学上具有革命性,更在医学、神经科学领域展现出广阔应用潜力。随着技术成熟,未来或可改写视觉障碍治疗范式,甚至重新定义人类对“颜色”的认知边界。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
