【前沿资讯】高双折射D形微光纤器件:双梳测量技术的新突破
光频梳技术凭借其在精确测量领域的卓越表现,成为科研人员探索微观世界和宏观宇宙的得力助手。近年来,双梳技术更是异军突起,通过两组不同重复率的光频梳实现时间异步采样和频谱多模外差干涉,大幅降低了对设备带宽和响应速度的要求,让精密光学测量得以在更广泛的领域施展拳脚,像吸收光谱、测距、传感器解调等。

不过,经典双梳系统的光源由两个独立锁模激光器构成,不仅成本高昂,对工作环境的要求也极为苛刻。为了推动双梳技术的广泛应用,单腔双梳结构应运而生,借助多种复用方法,在同一激光腔内实现稳定的异步超短脉冲输出,有效降低了系统复杂度。然而,现有单腔双梳源的重复频率和重复频率差往往较低,难以满足特定场景下对测量速度和精度的高要求,比如化学反应动力学过程监测、高速移动物体测距等。
在此背景下,Ding等人提出了一种超高双折射D形微光纤器件,为单腔双梳技术的发展注入了新的活力。该器件的设计独具匠心,其腰横截面呈非对称D形轮廓,这种特殊的形状打破了对称性,为实现高双折射创造了条件。通过有限元方法模拟发现,较小的曲率直径有利于提高双折射,但考虑到实际应用中对器件封装尺寸的限制,研究人员权衡后将曲率直径设定为2.5μm左右,此时理论双折射可达1.87×10⁻²。而且,该器件在1550nm处,偏振X和偏振Y的色散系数与非线性系数明显分离,反常色散能够确保在光纤激光器中快速建立孤子锁模。
在制造工艺方面,D形微光纤的制备分为侧抛和拉锥两步。侧抛过程中,利用砂轮对标准商用光纤进行机械加工,通过精确控制拉力、砂轮转速和研磨时间,将光纤侧边抛光至光纤芯与抛光面相切,此时传输损耗小于0.1dB。随后,采用火焰刷技术对侧面抛光的光纤进行热削锥,优化火焰温度、刷洗区域长度、步进电机移动距离和速度等参数,最终制备出的D形微光纤插损低至0.2dB,在7mm均匀腰部区域的双折射高达4.29×10⁻²,比商业偏振保持光纤的双折射大一个数量级。
将该器件应用于单短腔双梳激光器中,研究人员搭建了相应的实验装置。在实验过程中,通过调整泵浦功率和腔偏振状态,成功实现了双梳锁模。当腔长优化至基本重复频率为431MHz时,双梳稳定锁模的重复频率差达到247.6kHz,最大重复频率差更是高达258.7kHz,比以往全光纤单腔双梳的重复频率差大几个数量级。同时,研究人员还对双梳输出的特性进行了深入研究,包括频谱、光谱、自相关迹以及输出功率随泵浦功率的变化等。实验发现,双梳输出的光谱呈现出独特的特征,并且在不同泵浦功率下,激光器会经历连续波锁模、过渡区和稳定双梳锁模等不同状态。
此外,该双梳源在稳定性方面表现出色。通过连续扫描射频谱监测发现,在1小时的测试范围内,虽然重复频率有一定波动,但重复频率差的绝对波动低于0.044%。而且,通过对D形微光纤进行适当封装、主动热控制,对输入泵进行实时电反馈控制以及对整个激光装置进行精确振动隔离等措施,还可进一步提高稳定性。
这种基于高双折射D形微光纤器件的单腔双梳激光器,为提高双梳测量系统的采样率和精度提供了新的可能。在未来,有望广泛应用于环境监测、工业成分分析、导航等领域,以更简单、低成本的方式推动相关技术的发展,让我们在探索世界的道路上迈出更加坚实的步伐。
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
