扭曲莫尔光子晶体传感器:实现对光的相位、偏振和波长等特性的精确调控
2025年4月3日,哈佛大学约翰·A·保尔森工程与应用科学学院(SEAS)联合斯坦福大学和加州大学伯克利分校的研究团队开发出一种基于扭曲莫尔光子晶体的新型片上传感器。这种传感器利用微机电系统(MEMS)技术,能够实时控制晶体层之间的间隙和角度,从而实现对光的相位、偏振和波长等特性的精确调控。
一、技术原理与创新
扭曲莫尔光子晶体通过两层周期性结构的旋转和重叠,形成莫尔超晶格,从而产生独特的光学效应。这种效应可以通过调节层间距和扭转角度来动态调控光的传播行为。结合MEMS技术,研究团队首次实现了对莫尔结构的实时调节,使传感器具备多维响应能力。
该传感器具备旋转角度、垂直间距和探测角三自由度,能够同时进行高光谱和高偏振成像。这意味着每个像素点都能捕捉到电磁波谱的全域信息以及详细的偏振态数据。
二、应用前景
这项技术具有广泛的应用潜力,包括但不限于:
1.量子计算与通信:通过精确调控光子特性,支持量子信息处理。
2.数据通信:实现更高效的光信号传输和处理。
3.卫星遥感与医学成像:提供高精度的偏振和光谱信息,提升成像质量。
4.智能光谱仪与芯片级光学分析仪:支持小型化、高性能的光学设备。
三、制造工艺与量产能力
该传感器采用CMOS兼容工艺制造,支持晶圆级量产。研究团队证实,通过调节层间参数,该设备可以实现多场景应用,并具备大规模部署的可行性。
研究团队计划进一步开发更多自由度的调节机制,以提升调控精度和应用范围。这项技术不仅为光学系统的小型化和高性能化提供了新的解决方案,还为未来智能光子设备的发展奠定了基础。
这项研究成果发表在《自然·光子学》上,标志着光学超材料领域的一个重要里程碑。
-
点列图、波像差与光学传递函数:贯穿光学设计的三大核心评价技术分析
在精密光学系统的设计与优化中,像质评价是贯穿始终的核心环节。点列图(SpotDiagram)、波像差(WaveAberration)与光学传递函数(OTF,OpticalTransferFunction)作为三大支柱性技术,分别从几何轨迹追踪、波前相位分析、频域特性量化三个维度构建了完整的评价体系。它们既独立揭示系统特性,又在设计流程中形成有机协同,成为光学工程师雕琢高性能系统的关键工具。
2025-05-09
-
时域孤子分子:光纤通信信息容量突破的重要进展
在非线性科学领域,孤子作为稳定的非线性波动现象,在多个学科领域展现出重要研究价值。2005年,德国罗斯托克大学M.Stratmann研究团队在《物理评论快报》发表研究成果,首次通过实验观测证实光纤中存在时域孤子束缚态——一种由暗孤子绑定两个亮孤子形成的稳定结构。该研究为突破传统光纤通信系统的香农容量极限提供了新的物理路径,推动孤子通信从二进制编码向多态信息载体的理论与技术探索迈出关键一步。
2025-05-09
-
国产显微镜突围国际巨头垄断:从"替代者"到行业重塑者
在精密仪器领域长期被奥林巴斯、蔡司等国际品牌垄断的格局下,中国企业正以"进口品质、半数价格"的优势改写市场规则。记者从上海仪圆光学等国产龙头企业获悉,通过"技术迭代+成本重构"双轮驱动,国产显微镜关键性能指标已比肩国际一流,交付周期缩短至30天(进口品牌平均90天),价格仅为进口产品的50%-55%,正加速实现高端市场突破。
2025-05-08
-
一文了解STED显微镜:突破光学极限,开启微观世界新视野
在微观世界的研究中,传统光学显微镜一直受到光学衍射极限的限制,难以捕捉到更精细的细胞结构和生物分子的动态变化。然而,随着科学技术的不断进步,受激发射损耗(STED)显微镜的出现,为科学家们提供了一种突破这一限制的有力工具。
2025-05-08