弗劳恩霍夫研究所开发新型激光焊接工艺,实现低温量子技术的突破
2025年4月9日,弗劳恩霍夫可靠性与微集成研究所(IZM)的研究人员宣布了一项重大技术突破:他们开发了一种新型激光焊接工艺,能够在低至4开尔文的极低温环境下,将光子集成电路(PIC)与光纤连接,而无需使用粘合剂。这一创新为量子技术领域提供了一种更可靠、快速且经济的解决方案。

一、技术背景与挑战
量子技术的发展需要在极低温环境下观察量子效应,这对光子集成电路(PIC)与光纤的连接提出了极高的要求。传统的粘合剂连接方式在低温环境下容易失效,且无法满足量子技术对高稳定性和高可靠性的需求。
二、技术原理与创新
该激光焊接工艺利用了二氧化硅(SiO2)材料的特性,通过CO2激光对PIC的SiO2层进行局部预热,从而在光纤与PIC之间形成直接的材料键合。这种连接方式不仅提高了耐用性和热稳定性,还显著缩短了制造时间,仅需几秒钟即可完成焊接。
三、技术优势
1.高耐用性与热稳定性:激光焊接形成的连接比传统粘合剂连接更耐用,能够在极低温环境下保持稳定。
2.自动化潜力:该工艺具备可重复性,适合大规模生产,降低了制造成本。
3.低温适配:通过创新的预热技术,有效解决了4K极低温环境下的连接难题,为量子PIC的低温应用扫清了障碍。
四、应用前景
这项技术不仅适用于量子计算和低温技术领域,还具有广泛的应用潜力。例如,在生物光子学、传感器技术和高性能激光器等领域,该技术能够提供更可靠、更高效的解决方案。研究团队正在与工业伙伴合作,推动这一技术的产业化。
该激光焊接工艺的开发为量子技术的发展提供了重要的技术支持。通过提高量子通信系统的稳定性和可靠性,这项技术有望在量子计算、量子通信以及其他高科技激光加工领域发挥重要作用。
这项研究的成果标志着弗劳恩霍夫研究所在量子技术领域的又一重要里程碑,为未来的技术发展奠定了坚实的基础。
-
硅光、光模块与CPO的关联及核心特性分析
硅光、光模块、CPO这些高频出现的技术术语,背后承载着数据传输效率突破的核心逻辑。从传统通信网络到新一代数据中心,光传输技术的每一次革新都离不开材料、结构与封装方式的突破。本文将带你走进光传输技术的核心圈层,揭秘硅光技术如何推动光模块从分立组装走向共封装时代,以及这条进化之路上的关键突破与未来方向。
2025-12-31
-
铋基钙钛矿展现强非线性光学响应,推动全光器件发展
近日,燕山大学与南开大学联合研究团队在无铅钙钛矿非线性光学材料领域取得重要突破。相关成果以《空间自相位调制铋基钙钛矿的强非线性响应及其全光应用》为题,发表于国际知名期刊Laser&PhotonicsReviews(2025,19(8):2401929)。该研究不仅系统揭示了有机–无机杂化铋基钙钛矿在可见光波段的优异三阶非线性光学性能,还成功演示了其在全光开关与全光二极管等关键光子器件中的实际应用潜力。
2025-12-31
-
光学三大核心元件:平面镜、凸透镜与凹透镜的原理及应用探析
从日常梳妆的镜面反射到航天探测的精密成像,从视力矫正的光学器具到芯片制造的光刻技术,光学元件已深度融入人类生产生活与尖端科技领域。平面镜、凸透镜、凹透镜作为光学系统的三大核心基石,其基于光的反射与折射规律的工作机制,构建了现代光学技术的基础框架。本文将系统阐述三者的物理原理、设计规范、应用场景及发展趋势,展现基础光学元件的科学价值与技术魅力。
2025-12-31
-
TriAngle激光束准直:一看就懂的高精度光学校准方案
激光在工业加工(切割、焊接)、医疗设备(激光手术仪)、科研实验等场景中,都需要“走得直、聚得准”。如果激光束跑偏、发散,要么加工出来的产品不合格,要么医疗操作有风险,实验数据也会出错。
传统的激光校准靠人工慢慢调,又费时间又容易出错,环境稍微变一点(比如温度、振动)就不准了。而TriAngle是专门解决这个问题的设备,能让激光校准变得简单、快速又精准。2025-12-30
