弗劳恩霍夫研究所开发新型激光焊接工艺,实现低温量子技术的突破
2025年4月9日,弗劳恩霍夫可靠性与微集成研究所(IZM)的研究人员宣布了一项重大技术突破:他们开发了一种新型激光焊接工艺,能够在低至4开尔文的极低温环境下,将光子集成电路(PIC)与光纤连接,而无需使用粘合剂。这一创新为量子技术领域提供了一种更可靠、快速且经济的解决方案。
一、技术背景与挑战
量子技术的发展需要在极低温环境下观察量子效应,这对光子集成电路(PIC)与光纤的连接提出了极高的要求。传统的粘合剂连接方式在低温环境下容易失效,且无法满足量子技术对高稳定性和高可靠性的需求。
二、技术原理与创新
该激光焊接工艺利用了二氧化硅(SiO2)材料的特性,通过CO2激光对PIC的SiO2层进行局部预热,从而在光纤与PIC之间形成直接的材料键合。这种连接方式不仅提高了耐用性和热稳定性,还显著缩短了制造时间,仅需几秒钟即可完成焊接。
三、技术优势
1.高耐用性与热稳定性:激光焊接形成的连接比传统粘合剂连接更耐用,能够在极低温环境下保持稳定。
2.自动化潜力:该工艺具备可重复性,适合大规模生产,降低了制造成本。
3.低温适配:通过创新的预热技术,有效解决了4K极低温环境下的连接难题,为量子PIC的低温应用扫清了障碍。
四、应用前景
这项技术不仅适用于量子计算和低温技术领域,还具有广泛的应用潜力。例如,在生物光子学、传感器技术和高性能激光器等领域,该技术能够提供更可靠、更高效的解决方案。研究团队正在与工业伙伴合作,推动这一技术的产业化。
该激光焊接工艺的开发为量子技术的发展提供了重要的技术支持。通过提高量子通信系统的稳定性和可靠性,这项技术有望在量子计算、量子通信以及其他高科技激光加工领域发挥重要作用。
这项研究的成果标志着弗劳恩霍夫研究所在量子技术领域的又一重要里程碑,为未来的技术发展奠定了坚实的基础。
-
点列图、波像差与光学传递函数:贯穿光学设计的三大核心评价技术分析
在精密光学系统的设计与优化中,像质评价是贯穿始终的核心环节。点列图(SpotDiagram)、波像差(WaveAberration)与光学传递函数(OTF,OpticalTransferFunction)作为三大支柱性技术,分别从几何轨迹追踪、波前相位分析、频域特性量化三个维度构建了完整的评价体系。它们既独立揭示系统特性,又在设计流程中形成有机协同,成为光学工程师雕琢高性能系统的关键工具。
2025-05-09
-
时域孤子分子:光纤通信信息容量突破的重要进展
在非线性科学领域,孤子作为稳定的非线性波动现象,在多个学科领域展现出重要研究价值。2005年,德国罗斯托克大学M.Stratmann研究团队在《物理评论快报》发表研究成果,首次通过实验观测证实光纤中存在时域孤子束缚态——一种由暗孤子绑定两个亮孤子形成的稳定结构。该研究为突破传统光纤通信系统的香农容量极限提供了新的物理路径,推动孤子通信从二进制编码向多态信息载体的理论与技术探索迈出关键一步。
2025-05-09
-
国产显微镜突围国际巨头垄断:从"替代者"到行业重塑者
在精密仪器领域长期被奥林巴斯、蔡司等国际品牌垄断的格局下,中国企业正以"进口品质、半数价格"的优势改写市场规则。记者从上海仪圆光学等国产龙头企业获悉,通过"技术迭代+成本重构"双轮驱动,国产显微镜关键性能指标已比肩国际一流,交付周期缩短至30天(进口品牌平均90天),价格仅为进口产品的50%-55%,正加速实现高端市场突破。
2025-05-08
-
一文了解STED显微镜:突破光学极限,开启微观世界新视野
在微观世界的研究中,传统光学显微镜一直受到光学衍射极限的限制,难以捕捉到更精细的细胞结构和生物分子的动态变化。然而,随着科学技术的不断进步,受激发射损耗(STED)显微镜的出现,为科学家们提供了一种突破这一限制的有力工具。
2025-05-08