【前沿资讯】突破性技术:空中操控全息图首次实现,开启人机交互新时代
2025年4月10日,西班牙纳瓦拉公立大学的研究团队宣布了一项令人瞩目的技术突破:他们成功开发出一种可以在空中直接操控的真三维(3D)图形显示技术。这项技术不仅能够生成悬浮在空中的3D图像,还允许用户通过自然的手势与这些图像进行交互,无需佩戴任何虚拟现实设备。这一创新将科幻电影中的全息图场景带入了现实,为未来的人机交互方式打开了全新的可能性。

从科幻到现实:体积显示技术的突破
在电影中,我们常常看到悬浮在空中的全息图,这些图形被称为“体积显示”。它们无需佩戴虚拟现实眼镜即可从各个角度观看,给人以身临其境的视觉体验。然而,尽管体积显示技术已经存在多年,但大多数设备都无法支持直接交互。用户只能被动地观看,而无法通过手势或动作与这些图像进行互动。
纳瓦拉公立大学的研究团队通过一项创新技术解决了这一问题。他们开发了一种名为“弹性扩散器”的装置,这种扩散器能够以每秒2880帧的高速振动,并将图像同步投射到不同高度。通过视觉暂留效应,这些图像在用户眼中形成一个完整的3D图形。更重要的是,这种弹性扩散器不仅安全耐用,还能支持用户直接用手与图像互动。
自然交互:让3D图形“触手可及”
这项技术的核心在于其交互方式的自然性。用户无需任何额外设备,只需用手直接操作悬浮在空中的3D图形。例如,用户可以用食指和拇指抓住一个立方体并移动或旋转它,或者用食指和无名指模拟在表面上行走的双腿。这种交互方式模仿了人们日常使用手机的自然手势,使得与3D图形的互动更加直观和流畅。
首席研究员AsierMarzo表示:“我们习惯于直接与手机交互,例如点击按钮或用手指拖动屏幕上的文档。这个项目让我们能够将这种自然的交互方式扩展到3D图形,充分利用我们与生俱来的3D视觉和操控能力。”
从实验室到现实:技术的广泛应用前景
这项技术的突破不仅具有学术意义,还为多个领域的应用提供了无限可能。研究团队指出,这种可直接操控的3D图形技术可以广泛应用于教育、博物馆展览以及协同工作场景。
在教育领域,学生可以通过操作3D模型更直观地学习复杂的概念,例如组装发动机零件或观察人体解剖结构。在博物馆中,参观者可以与展品互动,无需佩戴任何设备即可体验沉浸式的展览。此外,这项技术还支持多用户协同,多个用户可以同时操作同一3D模型,为团队合作和协作学习提供了全新的可能性。
未来展望:开启人机交互新时代
这项研究是在纳瓦拉公立大学牵头、欧洲研究理事会(ERC)资助的InteVol项目下完成的。研究成果将在2025年4月26日至5月1日于日本横滨举行的CHI2025会议上发表。研究团队表示,他们希望这项技术能够尽快实现商业化,为教育、娱乐和工业领域带来革命性的变化。
随着技术的不断发展,我们或许很快就能看到这种空中操控全息图技术走进日常生活。无论是学生在课堂上学习,还是博物馆参观者与展品互动,这项技术都将成为连接虚拟与现实的桥梁,开启人机交互的新时代。
-
平行光管如何精准测量光学系统的五大核心指标
在智能手机成像、卫星遥感探测、自动驾驶环境感知等各类依赖光学技术的场景中,平行光管作为关键检测设备,以模拟无限远目标的核心功能,为光学系统性能量化提供标准化基准。从工业量产的质检流程到尖端科研的校准实验,其在保障光学设备精度与可靠性方面发挥着不可替代的作用,是光学工程领域不可或缺的“精准标尺”。
2025-12-08
-
【光学材料】单晶衍射呈离散斑点、多晶衍射呈同心圆环的机理研究
在材料科学的结构表征领域,透射电子显微镜(TEM)选区电子衍射(SAED)技术是解析晶体材料微观结构的核心手段之一。相同测试条件下,单晶材料的衍射图案表现为离散分布的明亮斑点,而多晶材料则呈现规整的同心圆环,这一现象是晶体内部微观结构特征的直接映射。本文将从衍射基本原理、晶粒取向差异、信号形成机制及特殊情况延伸等维度,系统阐释这一现象的本质规律。
2025-12-08
-
OptiSurf®镜面定位仪如何成为高精度光学测量新标杆?其技术优势与应用价值何在?
测量精度直接决定了光学设备的性能上限。由德国全欧光学TRIOPTICS设计的OptiSurf®镜面定位仪,凭借其非接触式测量技术与卓越的精度表现,成为解决光学元件中心厚度及空气间隔测量难题的理想工具,为光学行业的高精度生产与研发提供了可靠支撑。
2025-12-08
-
热红外检测核心技术解析:热释电与热电堆的原理及应用差异
在红外热探测、气体分析、激光功率监测等现代工业与科研领域,热-电转换技术是实现非接触式温度感知与能量检测的核心。其中,热释电效应与热电堆传感器作为两大主流热红外检测机制,凭借各自独特的物理特性,支撑着不同场景下的精准测量需求。本文将从原理本质、核心特性、应用场景等维度,深入解析两者的技术差异与选型逻辑。
2025-12-08
