一文读懂光学镜片精磨后光圈数的设定与影响因素
在光学镜片制造领域,精磨环节至关重要,而精磨后的光圈数更是决定镜片质量的关键因素。

在进行球面前的散粒磨料精磨时,准备工作不容小觑。一套配备不同粒度磨料、具有各异半径的球模是必备“武器”。精磨机上的镜盘与球模放置方式也有讲究,通常凹在上凸在下,但遇到凸镜盘光圈过高且半径不大的情况,将凸镜盘反转放置,此时镜盘后方需接把,确保从铁笔孔到球面的距离大于2R,以维持左右摇摆的稳定性。这一细节调整,充分体现了光学冷加工对精度的极致追求。
磨痕的扩展方向是判断精磨效果的重要依据。当球模修改达标后,无论是凹面还是凸面,磨痕都应从边缘向中心逐渐扩展。在实际操作中,这一过程不仅关乎工件厚度的控制,还影响着镜片表面的毛面质量。依据经验,当磨痕完成从边缘到中心的“封顶”过程,就意味着可以进行换砂和换精磨模的操作了。对于弹性上盘的零件,在精磨第二面前,中心厚度的把控尤为关键,最厚不能超公差上限0.08mm,最薄要大于公差下限0.03mm,这一严格的厚度公差标准,是保证镜片性能的基础。
精磨过程中,不同粒度的砂对镜片的“塑造”效果不同。用第一道砂(Wz)稍磨时,捺贴度从边缘算起为整个镜盘零件的1/2-2/3;用第二道砂(W14)精磨后,擦贴度达到2/3-3/4。而最终精磨后镜片所达到的光圈数,更是有着明确且细致的标准。

从表格数据来看,光圈数与抛光完工要求、镜盘上零件数量以及镜片曲率半径紧密相关。以抛光完工要求“N=0.3-1”为例,当镜盘上零件数量为1-15时,曲率半径小于20mm的镜片,精磨后光圈数为4-2;曲率半径在20-100mm之间,光圈数为3-2;曲率半径大于100mm,光圈数为2-1;平面镜片光圈数为0.5-1。随着镜盘上零件数量增加、曲率半径变化,光圈数标准也相应改变。这一整套复杂的标准体系,是无数次试验和经验积累的结晶,为光学镜片的批量生产提供了可靠的质量保障。
对于凸透镜,细磨完工后的低光圈状态对后续抛光极为有利。低光圈的具体数量并非随意确定,而是综合考虑最后一道砂的粒度、表面半径、镜盘直径以及玻璃牌号等多种因素。对于表面精度要求较高的球面,最后一道砂磨完后的光圈比抛光完工低1-4道光圈(镜盘表面半径和镜盘直径较大时,光圈差值较小);对于表面精度要求较低的球面,这一差值则在2-7道光圈。这种根据不同需求灵活调整光圈数的方式,既满足了不同应用场景下对镜片的精度要求,又在保证质量的前提下提高了生产效率。
光学镜片精磨后的光圈数,看似只是一组简单的数据,实则背后隐藏着光学冷加工制造的深厚技术积累和严谨工艺规范。从球模准备、磨痕控制到砂的选择、光圈数标准的设定,每一个环节都紧密相连,共同打造出高质量的光学镜片。随着科技的不断发展,光学镜片在各个领域的应用越来越广泛,对镜片质量的要求也日益提高。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
