南京大学团队突破3D成像技术,微型化快照偏振立体成像引领变革
在光学成像领域,传统技术仅能记录物体的平面投影,难以准确传达物体的深度、形状和空间关系。为解决这些局限,南京大学祝世宁院士团队提出了一种创新的微型化快照偏振立体成像技术,为3D成像技术带来新的突破。

技术原理与创新
该技术的核心在于利用偏振超表面透镜分离并聚焦全斯托克斯的偏振光,再将这些偏振光输入到结合物理建模与神经网络的重建模型中。通过这种方式,能够推导出物体表面的法线信息,进而生成精确的3D纹理。这种创新的方法不仅提高了成像的效率,还显著提升了3D重建的准确性。
实验成果与优势
研究团队制作了尺寸为1.65×1.65mm²的大规模偏振超构透镜,并成功应用于SPSIM系统。实验结果显示,超构透镜能够成功分离入射光的六种偏振状态,并将各个偏振光精确引导到目标位置。在窄带情况下,超构透镜仍能保持良好的效果,其平均消光比超过25dB,中心波长效率达到65%。此外,结合圆偏振通道的偏振超构透镜显著提高了3D重建的准确性,圆偏振信息对轮廓变化更敏感,能够提取更细微的形态特征。
应用前景与意义
微型化快照偏振立体成像系统具有超紧凑、高效率和高分辨率的特点,有望集成到便携式设备中。这一技术在多个领域具有广阔的应用前景,如遥感、显微镜和生物医学成像等。其高效的3D物体重建能力,将为这些领域带来更高效、更准确的监测和分析手段。
团队背景与实力
南京大学祝世宁院士团队在微纳光子体系研究领域具有深厚的技术积累和卓越的研究实力。团队成员在相关领域发表了众多高质量论文,并获得了多项国家级荣誉和奖项。他们的研究成果不仅推动了光学成像技术的发展,也为相关领域的应用提供了强大的技术支持。
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
