南京大学团队突破3D成像技术,微型化快照偏振立体成像引领变革
在光学成像领域,传统技术仅能记录物体的平面投影,难以准确传达物体的深度、形状和空间关系。为解决这些局限,南京大学祝世宁院士团队提出了一种创新的微型化快照偏振立体成像技术,为3D成像技术带来新的突破。
技术原理与创新
该技术的核心在于利用偏振超表面透镜分离并聚焦全斯托克斯的偏振光,再将这些偏振光输入到结合物理建模与神经网络的重建模型中。通过这种方式,能够推导出物体表面的法线信息,进而生成精确的3D纹理。这种创新的方法不仅提高了成像的效率,还显著提升了3D重建的准确性。
实验成果与优势
研究团队制作了尺寸为1.65×1.65mm²的大规模偏振超构透镜,并成功应用于SPSIM系统。实验结果显示,超构透镜能够成功分离入射光的六种偏振状态,并将各个偏振光精确引导到目标位置。在窄带情况下,超构透镜仍能保持良好的效果,其平均消光比超过25dB,中心波长效率达到65%。此外,结合圆偏振通道的偏振超构透镜显著提高了3D重建的准确性,圆偏振信息对轮廓变化更敏感,能够提取更细微的形态特征。
应用前景与意义
微型化快照偏振立体成像系统具有超紧凑、高效率和高分辨率的特点,有望集成到便携式设备中。这一技术在多个领域具有广阔的应用前景,如遥感、显微镜和生物医学成像等。其高效的3D物体重建能力,将为这些领域带来更高效、更准确的监测和分析手段。
团队背景与实力
南京大学祝世宁院士团队在微纳光子体系研究领域具有深厚的技术积累和卓越的研究实力。团队成员在相关领域发表了众多高质量论文,并获得了多项国家级荣誉和奖项。他们的研究成果不仅推动了光学成像技术的发展,也为相关领域的应用提供了强大的技术支持。
-
什么是硅光通信芯片共封装(CPO)技术?为什么说它是数据中心通信的变革驱动力
在人工智能、大数据、工业互联网等新兴技术的驱动下,全球数据流量呈现爆发式增长态势,预计至2025年将达到175Zettabyte。数据中心作为数据处理与交换的核心节点,对高速通信的需求日益迫切。然而,短距离通信中电互联技术受限于物理极限(单通道电互联速率<25Gb/s),且功耗问题显著,以光互联替代电互联成为提升通信带宽的必然选择,数据中心光收发模块正向800Gbit/s及以上速率的传输能力演进。
2025-05-30
-
碳化硅晶圆切割技术演进:从传统工艺到TLS切割的技术突破
作为新一代宽禁带半导体材料,碳化硅(SiC)凭借其宽带隙、高机械强度及优异导热性能,成为替代硅基功率器件的核心材料。然而,其莫氏硬度达9.2的物理特性,使晶圆切割成为制约产业化的关键瓶颈。本文系统分析传统机械切割与激光切割工艺的技术局限,重点阐述热激光分离(TLS)技术的原理、设备性能及产业化优势,揭示其在提升切割效率、降低损伤率及优化成本结构等方面的革命性突破。
2025-05-30
-
全维度光子自旋霍尔空间微分成像技术的研究进展
光子自旋霍尔效应(PSHE)作为自旋轨道相互作用的典型光学现象,在光学微分成像领域展现出重要应用价值。然而,传统基于PSHE的成像技术受限于输入光场偏振态的严格约束,难以实现振幅、相位、偏振全维度光场信息的同步微分处理。江西师范大学贺炎亮团队提出一种基于级联光子自旋霍尔效应的全维度光学空间微分器设计方案,通过半波片液晶偏振光栅(HPG)与四分之一波片液晶偏振光栅(QPG)的级联架构,实现了对左旋/右旋圆偏振基矢的独立微分运算,并将偏振微分成像转化为相位微分成像。实验结果表明,该系统可有效实现全维度光场的边缘检测,且通过光栅位置调控可精准调节微分图像对比度。本研究为光学成像、材料表征及光学信息处理等领域提供了全新技术路径。
2025-05-30
-
高速精磨工艺参数影响的系统性研究
在光学冷加工制造领域,高速精磨作为决定光学元件表面精度的核心工艺环节,其工艺参数的精准控制对加工质量与效率具有决定性意义。本文从机床参数、辅料参数、零件本体参数及加工时间参数四个维度,系统解析各参数对高速精磨过程的影响机制,旨在为光学元件精密加工的工艺优化提供理论依据与实践指导。
2025-05-29