【前沿资讯】基于人工智能算法的光纤激光器超短脉冲优化
光纤激光器以其优异的光束质量、高稳定性和紧凑型结构为特点,在光通信和精密制造等领域具有重要意义。超短脉冲因其脉冲持续时间短、光谱含量多样、峰值功率高等特点,广泛应用于激光加工、光存储、生物医学、激光成像等领域。然而,光纤激光器内部的超短脉冲演化过程复杂、高非线性,受到色散、损耗、增益和非线性效应等诸多方面的影响。传统的光纤激光器超短脉冲模拟采用分步傅立叶变换方法,该方法需要遍历光纤内的多个参数以达到脉冲的最佳状态,模拟是一个非常耗时的过程。

为了解决这一问题,研究人员探索了将人工智能算法引入光纤激光器超短脉冲优化的创新方法。Han等人使用神经网络模型来拟合和预测多个参数对光纤激光器内脉冲特性的影响,通过遗传算法实现参数优化,以确定最佳脉冲持续时间、脉冲能量和峰值功率。这种方法的优点在于可以快速有效地综合评估多个参数对超短脉冲特性的影响,无需进行大量的实验和复杂的理论分析。
具体来说,研究人员首先使用分步傅立叶变换生成训练样本,每个样本封装了激光腔参数并输出脉冲信息。然后,构建神经网络模型,将这些样本作为数据集进行训练,以拟合七个激光腔参数与脉冲信息之间的非线性关系。训练后的神经网络能够对随机生成的七个激光腔参数的脉冲信息进行预测。接着,利用遗传算法和神经网络生成的拟合函数,搜索锁模光纤激光器的极值,从而达到最佳性能。遗传算法基于自然选择的概念,通过随机创建初始个体群体,评估它们的适应度,选择得分最高的个体作为亲本,通过交叉和突变产生下一代,形成新的种群,逐步逼近最优解。
通过这种方法,研究人员成功地优化了光纤激光器的超短脉冲特性,脉冲宽度被缩短到最小2.03159ps,比数据集中的最小脉冲宽度范围小0.96841ps;脉冲能量有所增加,最大记录能量为115.345pJ,超过了数据集中最大能量范围8.345pJ;峰值功率也得到了提高,最大记录峰值功率为21.1061W,超过了数据集中7.1061W的最大功率范围。
这种基于人工智能算法的光纤激光器超短脉冲优化方法,不仅显著提高了优化效率和准确性,还为激光精密加工等潜在应用铺平了道路。随着人工智能技术的不断发展,其在光纤激光器领域的应用前景将更加广阔。
-
突破传统技术瓶颈超短耗散拉曼孤子实现创新性突破——光纤谐振腔技术迎来革命性革新
超短光脉冲与宽带频率梳作为电信通信、人工智能、天文观测等领域的核心技术支撑,其性能水平直接影响相关领域的应用精度与运行效率。长期以来,传统技术体系始终面临显著技术瓶颈:微谐振器虽能生成短脉冲,却存在梳间距过大的固有缺陷;光纤谐振器虽可实现精细间距输出,却难以突破百飞秒级脉冲持续时间的限制。近日,新西兰奥克兰大学与华南理工大学联合研究团队在《NaturePhotonics》发表的最新研究成果,通过相位相干光脉冲驱动克尔谐振腔的创新方案,成功实现持续时间远低于100飞秒的超短耗散拉曼孤子,为解决这一长期存在的技术难题提供了创新性解决方案。
2025-11-18
-
什么是光线传输矩阵?为何说它是激光工程领域的标准化分析核心工具?
在激光器设计、谐振腔优化及光束质量调控等关键技术场景中,光线传输规律的精准把控直接决定系统整体性能。传统光学计算依赖复杂公式推导,效率低下且易出错,而光线传输矩阵通过将复杂光学变换转化为标准化矩阵运算,为光线轨迹量化分析提供了高效解决方案,成为激光技术研发过程中不可或缺的核心支撑工具。
2025-11-18
-
高斯光束在激光传输中的标准形态与核心应用原理
激光测距的精准聚焦、光纤通信的远距离稳定传输、激光医疗的精准靶向作用——这些现代激光技术的实现,均以高斯光束为核心支撑。作为激光传输的“标准形态”,高斯光束之所以能成为光学工程领域的核心模型,其背后蕴含着严密的理论推导与显著的应用优势,下文将从理论基础、核心参数、技术优势及应用场景展开系统阐述。
2025-11-18
-
光学设计关键技术,基于材料替换的公差灵敏度优化研究
光学系统设计的核心目标是实现“高性能与可制造性的统一”。在实际工程应用中,部分方案虽表面满足光学性能指标,且结构设计相近,但因公差灵敏度过高,易导致加工成本激增、交付周期延长,甚至无法满足量产需求。材料选择作为光学设计的核心环节,不仅影响光学性能调控,更是优化公差特性的关键变量,相关实践研究具有重要工程价值。
2025-11-18
