【前沿资讯】基于人工智能算法的光纤激光器超短脉冲优化
光纤激光器以其优异的光束质量、高稳定性和紧凑型结构为特点,在光通信和精密制造等领域具有重要意义。超短脉冲因其脉冲持续时间短、光谱含量多样、峰值功率高等特点,广泛应用于激光加工、光存储、生物医学、激光成像等领域。然而,光纤激光器内部的超短脉冲演化过程复杂、高非线性,受到色散、损耗、增益和非线性效应等诸多方面的影响。传统的光纤激光器超短脉冲模拟采用分步傅立叶变换方法,该方法需要遍历光纤内的多个参数以达到脉冲的最佳状态,模拟是一个非常耗时的过程。
为了解决这一问题,研究人员探索了将人工智能算法引入光纤激光器超短脉冲优化的创新方法。Han等人使用神经网络模型来拟合和预测多个参数对光纤激光器内脉冲特性的影响,通过遗传算法实现参数优化,以确定最佳脉冲持续时间、脉冲能量和峰值功率。这种方法的优点在于可以快速有效地综合评估多个参数对超短脉冲特性的影响,无需进行大量的实验和复杂的理论分析。
具体来说,研究人员首先使用分步傅立叶变换生成训练样本,每个样本封装了激光腔参数并输出脉冲信息。然后,构建神经网络模型,将这些样本作为数据集进行训练,以拟合七个激光腔参数与脉冲信息之间的非线性关系。训练后的神经网络能够对随机生成的七个激光腔参数的脉冲信息进行预测。接着,利用遗传算法和神经网络生成的拟合函数,搜索锁模光纤激光器的极值,从而达到最佳性能。遗传算法基于自然选择的概念,通过随机创建初始个体群体,评估它们的适应度,选择得分最高的个体作为亲本,通过交叉和突变产生下一代,形成新的种群,逐步逼近最优解。
通过这种方法,研究人员成功地优化了光纤激光器的超短脉冲特性,脉冲宽度被缩短到最小2.03159ps,比数据集中的最小脉冲宽度范围小0.96841ps;脉冲能量有所增加,最大记录能量为115.345pJ,超过了数据集中最大能量范围8.345pJ;峰值功率也得到了提高,最大记录峰值功率为21.1061W,超过了数据集中7.1061W的最大功率范围。
这种基于人工智能算法的光纤激光器超短脉冲优化方法,不仅显著提高了优化效率和准确性,还为激光精密加工等潜在应用铺平了道路。随着人工智能技术的不断发展,其在光纤激光器领域的应用前景将更加广阔。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30