单次拍摄实现毫米级三维荧光成像:神经场技术突破传统显微极限
在生物学研究中,观察活体细胞和组织的动态变化需要高时空分辨率的成像技术。传统荧光显微镜依赖逐层扫描获取三维信息,不仅耗时,还可能因光毒性损伤样本。近日,加州理工学院团队在《Advanced Photonics》(IF=20.6)发表突破性成果,通过Quadra Pol点扩散函数(PSF)与神经场技术结合,实现了单次曝光下100立方毫米体积的高分辨率三维成像,采集速度提升20倍,为实时观测复杂生物过程开辟了新路径。
一、技术核心:四维度编码破解深度难题
传统三维成像的核心挑战在于深度信息的模糊性——离焦平面的信号会叠加到焦平面图像中。该研究创新性地在后焦平面引入四极化偏振器,配合偏振相机同步采集四个方向(0°、45°、90°、135°)的荧光信号。通过精心设计的PSF,每个轴向位置的荧光会在四个偏振通道中产生独特的强度分布模式,如同为不同深度的信号“打标签”。
二、关键创新点:
1.无歧义深度编码:通过偏振态差异直接解析深度,无需稀疏性假设;
2.紧凑系统设计:定制偏振器集成在相机前,保持显微镜轻量化;
3.神经场重建算法:基于深度学习的优化模型,显著提升图像信噪比和分辨率。
三、性能验证:从细菌到植物根系的跨尺度应用
研究团队通过三组实验验证技术优势:
1.荧光微珠测试:在1.2毫米景深内,横向分辨率达7微米,轴向分辨率240微米,远超传统方法;
2.沙表面大肠杆菌成像:通过全聚焦算法,将2毫米高度差的菌落清晰叠加,解决沙粒表面不平整导致的失焦问题;
3.小麦根系三维重建:神经场技术在厚壁区域的细节解析能力比传统去卷积提升30%,成功呈现细胞壁结构。
四、应用前景:生态与医学研究的“时空显微镜”
该技术的单次毫米级成像能力为以下领域带来变革:
根际微生物研究:实时观测根系与土壤微生物的动态互作;
活体成像:结合小型化设计,未来可用于动物体内深层组织观测;
生态监测:快速构建复杂环境(如珊瑚礁、土壤)的三维荧光图谱。
论文通讯作者ChanghueiYang教授表示:“我们的方法突破了传统成像的时空限制,如同为生物学家提供了一台‘时间冻结器’。下一步计划将其与超分辨技术结合,进一步拓展应用边界。”
这项研究不仅革新了荧光显微技术,更标志着神经场算法在光学成像领域的成功落地。随着硬件成本的降低和算法优化,毫米级三维实时成像有望成为生物学实验室的常规工具,推动从基础研究到临床诊断的全链条进步。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30