578nm声光调QNd:YLF/KGW/LBO拉曼黄光激光器
光谱范围在550590nm的黄色相干光源在多个领域有广泛应用,如激光纳导星、医学和生物医学科学等。特别是577±4nm的黄光源在治疗眼部疾病和皮肤病方面具有优势。目前产生黄光的技术有多种,但都存在一些局限性。受激拉曼散射与二次谐波产生相结合的二极管泵浦掺钕固态激光器被认为是产生黄光的有效方法。
一、技术创新点
高功率与高能纳秒脉冲:通过声光调QNd:YLF/KGW拉曼激光器的腔内二次谐波产生,实现了578nm的高功率和高能纳秒脉冲固态黄激光。在51W的注入泵浦功率下,578nm处的最大平均输出功率达到4.5W,重复率为5kHz,脉冲持续时间为6.7ns,光功率转换效率为8.8%。在1kHz重复率下,脉冲能量提高到3.6mJ,对应5.6ns的脉冲持续时间和高达660kW的峰值功率。
热效应管理:采用多段Nd:YLF晶体提高热断裂泵浦极限,并用球面透镜补偿π偏振光束的负热透镜效应,显著提高了功率和效率。
二、实验装置与原理
泵浦源:120W连续波光纤耦合激光二极管,中心波长调谐到880nm左右。
激光增益介质:多段Nd:YLF晶体,其纵向温度分布更平滑,断裂极限激光强度更高。
调Q:由声光调制器完成,驱动频率为27.12MHz。
拉曼增益介质:KGW晶体,具有高损伤阈值、较大的拉曼增益系数和强拉曼振动模式。
二次谐波产生:I型临界相位匹配LBO晶体,用于将1156nm的第一斯托克斯激光转换为578nm的黄光。
三、性能优化
热透镜效应补偿:插入f=300mm的平凸球面透镜补偿Nd:YLF晶体中的负热透镜效应,提高模到泵浦的重叠效率和拉曼转换效率及倍频转换效率。
脉冲特性:随着泵浦功率增加,黄光脉冲宽度下降,峰值功率提高。在全入射泵浦功率下,脉冲宽度分别下降到9.5ns和6.7ns左右,峰值功率高达66kW和134kW左右。
四、应用前景
该578nm拉曼黄光激光器在治疗皮肤病、眼部疾病和其他疾病方面具有巨大潜力,特别是在需要瞬间高能破坏靶组织的治疗方面,如黄斑水肿和血管疾病。
这项研究为高功率和高能黄光激光器的发展提供了重要参考,有望推动其在医学和生物医学等领域的广泛应用。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30