578nm声光调QNd:YLF/KGW/LBO拉曼黄光激光器
光谱范围在550590nm的黄色相干光源在多个领域有广泛应用,如激光纳导星、医学和生物医学科学等。特别是577±4nm的黄光源在治疗眼部疾病和皮肤病方面具有优势。目前产生黄光的技术有多种,但都存在一些局限性。受激拉曼散射与二次谐波产生相结合的二极管泵浦掺钕固态激光器被认为是产生黄光的有效方法。

一、技术创新点
高功率与高能纳秒脉冲:通过声光调QNd:YLF/KGW拉曼激光器的腔内二次谐波产生,实现了578nm的高功率和高能纳秒脉冲固态黄激光。在51W的注入泵浦功率下,578nm处的最大平均输出功率达到4.5W,重复率为5kHz,脉冲持续时间为6.7ns,光功率转换效率为8.8%。在1kHz重复率下,脉冲能量提高到3.6mJ,对应5.6ns的脉冲持续时间和高达660kW的峰值功率。
热效应管理:采用多段Nd:YLF晶体提高热断裂泵浦极限,并用球面透镜补偿π偏振光束的负热透镜效应,显著提高了功率和效率。
二、实验装置与原理
泵浦源:120W连续波光纤耦合激光二极管,中心波长调谐到880nm左右。
激光增益介质:多段Nd:YLF晶体,其纵向温度分布更平滑,断裂极限激光强度更高。
调Q:由声光调制器完成,驱动频率为27.12MHz。
拉曼增益介质:KGW晶体,具有高损伤阈值、较大的拉曼增益系数和强拉曼振动模式。
二次谐波产生:I型临界相位匹配LBO晶体,用于将1156nm的第一斯托克斯激光转换为578nm的黄光。
三、性能优化
热透镜效应补偿:插入f=300mm的平凸球面透镜补偿Nd:YLF晶体中的负热透镜效应,提高模到泵浦的重叠效率和拉曼转换效率及倍频转换效率。
脉冲特性:随着泵浦功率增加,黄光脉冲宽度下降,峰值功率提高。在全入射泵浦功率下,脉冲宽度分别下降到9.5ns和6.7ns左右,峰值功率高达66kW和134kW左右。
四、应用前景
该578nm拉曼黄光激光器在治疗皮肤病、眼部疾病和其他疾病方面具有巨大潜力,特别是在需要瞬间高能破坏靶组织的治疗方面,如黄斑水肿和血管疾病。
这项研究为高功率和高能黄光激光器的发展提供了重要参考,有望推动其在医学和生物医学等领域的广泛应用。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
