光学材料对照表解析与应用指南
一、引言
在光学领域,不同品牌生产的光学材料具有各自的命名规则,这给光学设计与制造过程中的材料选型带来了一定的复杂性。为了便于工程师和技术人员快速准确地选择合适的光学材料,本文将对常见光学材料在不同品牌(CDGM、HOYA、OHARA、SCHOTT)之间的对应关系进行解析,并探讨其在实际应用中的注意事项。

二、光学材料对照表详细解析
以下是部分光学材料在不同品牌中的对应关系:
| 序号 | CDGM | HOYA | OHARA | SCHOTT |
|---|---|---|---|---|
| 1 | H-FK61 | FCD1 | S-FPL51 | N-PK52A |
| 5 | H-K6 | C7 | NSL7 | K7 |
| 6 | H-K9L | BSC7 | S-BSL7 | N-BK7 |
| 10 | H-BaK2 | BAC2 | S-BAL12 | N-BAK2 |
| 14 | H-BaK8 | BAC1 | S-BAL11 | N-BAK1 |
| 28 | H-LaK4L | LACL60 | S-BSM81 | N-LAK21 |
| 30 | H-LaK7A | LAC8 | S-LAL8 | N-LAK8 |
| 34 | H-LaK50A | LAC7 | S-LAL7 | N-LAK7 |
| 40 | H-QF1 | E-FEL1 | S-TIL1 | N-FEL1 |
| 43 | H-QF14 | E-F8 | - | - |
| 58 | BaF3 | BAFL4 | BAL4 | BALF4 |
| 70 | ZF1 | FD2 | PBM22 | SF2 |
| 80 | ZF5 | FD3 | PBH3 | SF3 |
| 84 | ZF10 | FD8 | PBM28 | SF8 |
| 98 | H-LaF1 | LACL5 | S-AL58 | - |
| 101 | H-LaF4 | E-LAF7 | S-LAM7 | N-LAF7 |
三、光学材料应用中的注意事项
(一)材料特性匹配
不同光学材料具有独特的光学特性,如折射率、阿贝数等。在选择材料时,需根据具体光学系统的设计要求,确保材料的特性与系统需求相匹配。例如,对于需要高折射率材料来实现特定光线偏折的应用,应选择相应特性的材料。
(二)加工工艺适应性
光学材料的加工工艺对其最终性能有重要影响。不同品牌材料可能在硬度、脆性等机械性能上有所差异,这会影响研磨、抛光等加工步骤的工艺参数。了解材料的加工特性,有助于优化加工流程,提高生产效率和产品质量。
(三)环境稳定性
光学系统可能在不同的环境条件下工作,如温度、湿度变化较大的场景。光学材料需具备足够的环境稳定性,以保证在特定环境下仍能保持良好的光学性能。某些材料可能对温度变化敏感,导致性能波动,需谨慎选用。
(四)成本控制
不同品牌和类型的光学材料在价格上存在差异。在满足光学性能要求的前提下,应综合考虑材料成本与加工成本,选择性价比高的材料方案,以实现项目的经济效益最大化。
掌握光学材料在不同品牌间的对应关系,以及在应用中的注意事项,对于光学设计与制造至关重要。通过合理选型与优化工艺,可以充分发挥光学材料的性能优势,满足日益复杂的光学系统需求,推动光学技术在各个领域的创新发展。
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
