【光学前沿】重大突破!西安光机所成功研制室温Ho:YLF薄片激光器
近日,中国科学院西安光学精密机械研究所(XIOPM)付玉喜教授领导的研究团队取得了一项重大科研成果。他们首次成功开发出室温掺钬氟化钇锂(Ho:YLF)复合薄片激光器,相关研究成果发表于《OpticsExpress》。这一突破为激光技术领域带来了新的曙光,有望推动多个相关领域的快速发展。

在激光技术的应用中,工作在2μm光谱范围内的激光器具有独特的优势。其对眼睛的安全性较高,在使用过程中能有效减少对人体的潜在伤害;水对该波段激光的高吸收率,使其在医疗、工业加工等领域有广泛的应用前景;同时,低大气衰减的特性也让它在光通信、遥感等方面备受青睐。然而,传统的2μm激光器存在一个明显的短板——通常需要低温冷却来控制热效应。这不仅增加了系统的复杂性,大幅提高了成本,还限制了其在紧凑型、空间受限和移动平台中的应用。因此,开发高功率室温2μm激光器成为全球科研人员竞相追逐的重要研究方向。
此次西安光机所的研究团队另辟蹊径,开发出一种基于Ho:YLF的新型复合薄片结构。他们巧妙地将2at.%掺杂的Ho:YLF晶体与未掺杂的YLF覆盖层结合在一起。这一创新设计带来了诸多好处,显著提高了晶体的机械坚固性,就像是给激光器的“心脏”穿上了一层坚固的铠甲,让其更加稳定可靠;同时,还有效抑制了自发辐射的放大效应,大大增强了激光输出的稳定性。
为了进一步提升激光器的性能,研究人员还对光学泵浦系统进行了优化。他们采用了具有12个泵浦周期的多通道配置,并结合了高效的热管理策略。这种组合拳不仅确保了激光器能够实现高功率输出,还最大限度地降低了热透镜效应,从而获得了卓越的光束质量。
从实验结果来看,这款新型激光器的表现堪称惊艳。当由直径为1.8mm的1940nm掺铥光纤激光器泵浦时,它的峰值输出功率达到了26.5W,光效率为38.1%,斜率效率为42.0%。而且,其光束质量几乎达到衍射极限,功率稳定性的相对标准偏差仅为0.35%。如此出色的性能数据,充分证明了这款激光器的先进性和可靠性。
付玉喜教授表示,这项工作为开发结构紧凑、经济高效的高功率2μm激光器铺平了道路。按照目前的研究趋势,该类型激光器未来甚至有可能达到100W水平,这将极大地推动超快激光科学的发展。此外,它还为开发高功率和便携式红外激光系统提供了一种全新的方法,有望在军事、医疗、工业等多个领域引发新一轮的技术变革。
随着这项技术的不断成熟和推广应用,相信在不久的将来,我们将在更多场景中看到这款室温Ho:YLF薄片激光器的身影,它将为人们的生活和社会的发展带来更多便利和惊喜。让我们共同期待激光技术在这一突破的带动下,迎来更加辉煌的明天。
-
硅光、光模块与CPO的关联及核心特性分析
硅光、光模块、CPO这些高频出现的技术术语,背后承载着数据传输效率突破的核心逻辑。从传统通信网络到新一代数据中心,光传输技术的每一次革新都离不开材料、结构与封装方式的突破。本文将带你走进光传输技术的核心圈层,揭秘硅光技术如何推动光模块从分立组装走向共封装时代,以及这条进化之路上的关键突破与未来方向。
2025-12-31
-
铋基钙钛矿展现强非线性光学响应,推动全光器件发展
近日,燕山大学与南开大学联合研究团队在无铅钙钛矿非线性光学材料领域取得重要突破。相关成果以《空间自相位调制铋基钙钛矿的强非线性响应及其全光应用》为题,发表于国际知名期刊Laser&PhotonicsReviews(2025,19(8):2401929)。该研究不仅系统揭示了有机–无机杂化铋基钙钛矿在可见光波段的优异三阶非线性光学性能,还成功演示了其在全光开关与全光二极管等关键光子器件中的实际应用潜力。
2025-12-31
-
光学三大核心元件:平面镜、凸透镜与凹透镜的原理及应用探析
从日常梳妆的镜面反射到航天探测的精密成像,从视力矫正的光学器具到芯片制造的光刻技术,光学元件已深度融入人类生产生活与尖端科技领域。平面镜、凸透镜、凹透镜作为光学系统的三大核心基石,其基于光的反射与折射规律的工作机制,构建了现代光学技术的基础框架。本文将系统阐述三者的物理原理、设计规范、应用场景及发展趋势,展现基础光学元件的科学价值与技术魅力。
2025-12-31
-
TriAngle激光束准直:一看就懂的高精度光学校准方案
激光在工业加工(切割、焊接)、医疗设备(激光手术仪)、科研实验等场景中,都需要“走得直、聚得准”。如果激光束跑偏、发散,要么加工出来的产品不合格,要么医疗操作有风险,实验数据也会出错。
传统的激光校准靠人工慢慢调,又费时间又容易出错,环境稍微变一点(比如温度、振动)就不准了。而TriAngle是专门解决这个问题的设备,能让激光校准变得简单、快速又精准。2025-12-30
