【光学前沿】重大突破!西安光机所成功研制室温Ho:YLF薄片激光器
近日,中国科学院西安光学精密机械研究所(XIOPM)付玉喜教授领导的研究团队取得了一项重大科研成果。他们首次成功开发出室温掺钬氟化钇锂(Ho:YLF)复合薄片激光器,相关研究成果发表于《OpticsExpress》。这一突破为激光技术领域带来了新的曙光,有望推动多个相关领域的快速发展。
在激光技术的应用中,工作在2μm光谱范围内的激光器具有独特的优势。其对眼睛的安全性较高,在使用过程中能有效减少对人体的潜在伤害;水对该波段激光的高吸收率,使其在医疗、工业加工等领域有广泛的应用前景;同时,低大气衰减的特性也让它在光通信、遥感等方面备受青睐。然而,传统的2μm激光器存在一个明显的短板——通常需要低温冷却来控制热效应。这不仅增加了系统的复杂性,大幅提高了成本,还限制了其在紧凑型、空间受限和移动平台中的应用。因此,开发高功率室温2μm激光器成为全球科研人员竞相追逐的重要研究方向。
此次西安光机所的研究团队另辟蹊径,开发出一种基于Ho:YLF的新型复合薄片结构。他们巧妙地将2at.%掺杂的Ho:YLF晶体与未掺杂的YLF覆盖层结合在一起。这一创新设计带来了诸多好处,显著提高了晶体的机械坚固性,就像是给激光器的“心脏”穿上了一层坚固的铠甲,让其更加稳定可靠;同时,还有效抑制了自发辐射的放大效应,大大增强了激光输出的稳定性。
为了进一步提升激光器的性能,研究人员还对光学泵浦系统进行了优化。他们采用了具有12个泵浦周期的多通道配置,并结合了高效的热管理策略。这种组合拳不仅确保了激光器能够实现高功率输出,还最大限度地降低了热透镜效应,从而获得了卓越的光束质量。
从实验结果来看,这款新型激光器的表现堪称惊艳。当由直径为1.8mm的1940nm掺铥光纤激光器泵浦时,它的峰值输出功率达到了26.5W,光效率为38.1%,斜率效率为42.0%。而且,其光束质量几乎达到衍射极限,功率稳定性的相对标准偏差仅为0.35%。如此出色的性能数据,充分证明了这款激光器的先进性和可靠性。
付玉喜教授表示,这项工作为开发结构紧凑、经济高效的高功率2μm激光器铺平了道路。按照目前的研究趋势,该类型激光器未来甚至有可能达到100W水平,这将极大地推动超快激光科学的发展。此外,它还为开发高功率和便携式红外激光系统提供了一种全新的方法,有望在军事、医疗、工业等多个领域引发新一轮的技术变革。
随着这项技术的不断成熟和推广应用,相信在不久的将来,我们将在更多场景中看到这款室温Ho:YLF薄片激光器的身影,它将为人们的生活和社会的发展带来更多便利和惊喜。让我们共同期待激光技术在这一突破的带动下,迎来更加辉煌的明天。
-
低密度等离子体棱镜压缩器取得突破,突破传统光学限制,赋能超高功率激光技术
激光技术的迅猛发展,持续推动着人类对极端物理现象的探索,而拍瓦级及更高功率的激光装置,更是解开高能物理、相对论光学等领域奥秘的关键工具。然而,传统激光脉冲压缩技术长期受限于光学元件的损伤阈值,成为制约激光功率提升的核心瓶颈。近日,美国密歇根大学、罗切斯特大学等机构的科研人员联合研发出基于低密度等离子体棱镜的新型脉冲压缩器,为突破这一限制带来革命性进展,相关成果发表于《HighPower Laser Scienceand Engineering》。
2025-08-18
-
从光斑到清晰成像,光学系统如何突破"模糊"极限?
当我们透过镜头观察世界时,那些清晰的图像背后,藏着光的衍射与数学模型的复杂博弈。为何遥远的恒星在望远镜中会变成光斑?光学系统如何传递图像的细节?从艾里斑到调制传递函数,这些关键概念正是解开"模糊"谜题的钥匙。
2025-08-18
-
粉末增材制造技术在掺铒石英光纤激光器中的应用研究
在光纤通信、激光加工及生物医疗等关键领域,高性能光纤激光器的需求持续攀升,而增益光纤作为其核心构成部件,其制造工艺直接决定器件的性能水平。传统制造方法虽能生产高质量增益光纤,但存在生产周期冗长、成本高昂及成分调控灵活性不足等显著局限。近期,PawelManiewski等人在《Optica》期刊发表的研究成果,提出了一种基于粉末增材制造的新型制备方案,为高性能增益光纤的研发开辟了全新路径。
2025-08-18
-
偏心仪在透镜及镜片加工中的应用解析
偏心仪在透镜及镜片加工领域中应用广泛,其核心作用在于通过精密检测与校准,确保光学元件的几何中心与光轴保持高度一致性,进而保障光学系统的成像质量与性能稳定性。具体应用如下:
2025-08-15