【光学前沿】广义涡旋光束能否精准操控微观粒子的光舞之旅?
在微观研究中,激光与微粒的相互作用展现出奇妙的景象。传统光学涡旋因其轨道角动量特性在微操控领域备受关注,但其光场尺寸受限于拓扑荷数,强度分布单一环形结构,限制了全息光镊领域的操控性能。中国科学院西安光机所姚保利研究团队提出的广义完美光学涡旋(GPOV)突破了这些限制,通过光栅叠加算法实现拓扑荷数和光束形态的独立调控,为光场赋予了更强的灵活性与操控能力。

广义完美涡旋光束微操控研究理论模型
研究团队通过光栅叠加算法编码GPOV相位全息图,并基于电磁散射模型中的T矩阵方法,理论解析了紧聚焦涡旋光束作用于微粒的时间平均光学力。GPOV的计算全息图(CGH)的复振幅表示为:

通过对包围聚苯乙烯微粒表面的麦克斯韦应力张量积分,计算出粒子所受的时间平均光学力。研究结果表明,随着物镜数值孔径(NA)的增大,焦场尺寸减小,捕获刚度显著提升。例如,当NA从0.7增加到1.4时,捕获刚度依次为21.52、27.34、31.64、35.73、36.21、38.54、40.11和41.68pN/μm。此外,随着拓扑荷值(l)的增大,光场相位梯度力增强,驱动微粒沿轨道传输。
实验探究
为验证GPOV对荧光微粒的操控能力,研究团队搭建了荧光-全息光镊系统,产生了“梨形”和“花形”完美涡旋光阱,并开展了微操纵实验。实验结果表明,粒子在“梨形”光场中顺时针非匀速旋转,这是由于光场强度在拐点位置处的不均匀性。而“花形”光场则展示了更均匀的操控效果。
这项研究不仅拓展了光学涡旋在微操控领域的应用边界,还为微尺度传输、智能光学器件和高效能量利用打下了坚实基础。研究团队计划融入人工智能技术,优化光场轨道动量流的均匀性,探索其在纳米粒子组装和生物传感中的应用。随着研究的深入,这一技术将为光学微操控开启全新的篇章。
姚保利研究员团队长期专注于光场调控、超分辨成像、光学微操控技术等领域的理论与实验研究。团队在《NatureCommunications》、《PNAS》、《PhysicalReviewLetters》等国际知名期刊上发表论文300余篇,授权多项国家发明专利,并承担了国家自然科学基金重大科研仪器研制项目、国家重大基础研究计划课题、国家重点研发计划课题等30余项重大科研任务,曾荣获陕西省科学技术一等奖、二等奖及重点科技创新团队等多项荣誉。
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
