【光学前沿】广义涡旋光束能否精准操控微观粒子的光舞之旅?
在微观研究中,激光与微粒的相互作用展现出奇妙的景象。传统光学涡旋因其轨道角动量特性在微操控领域备受关注,但其光场尺寸受限于拓扑荷数,强度分布单一环形结构,限制了全息光镊领域的操控性能。中国科学院西安光机所姚保利研究团队提出的广义完美光学涡旋(GPOV)突破了这些限制,通过光栅叠加算法实现拓扑荷数和光束形态的独立调控,为光场赋予了更强的灵活性与操控能力。
广义完美涡旋光束微操控研究理论模型
研究团队通过光栅叠加算法编码GPOV相位全息图,并基于电磁散射模型中的T矩阵方法,理论解析了紧聚焦涡旋光束作用于微粒的时间平均光学力。GPOV的计算全息图(CGH)的复振幅表示为:
通过对包围聚苯乙烯微粒表面的麦克斯韦应力张量积分,计算出粒子所受的时间平均光学力。研究结果表明,随着物镜数值孔径(NA)的增大,焦场尺寸减小,捕获刚度显著提升。例如,当NA从0.7增加到1.4时,捕获刚度依次为21.52、27.34、31.64、35.73、36.21、38.54、40.11和41.68pN/μm。此外,随着拓扑荷值(l)的增大,光场相位梯度力增强,驱动微粒沿轨道传输。
实验探究
为验证GPOV对荧光微粒的操控能力,研究团队搭建了荧光-全息光镊系统,产生了“梨形”和“花形”完美涡旋光阱,并开展了微操纵实验。实验结果表明,粒子在“梨形”光场中顺时针非匀速旋转,这是由于光场强度在拐点位置处的不均匀性。而“花形”光场则展示了更均匀的操控效果。
这项研究不仅拓展了光学涡旋在微操控领域的应用边界,还为微尺度传输、智能光学器件和高效能量利用打下了坚实基础。研究团队计划融入人工智能技术,优化光场轨道动量流的均匀性,探索其在纳米粒子组装和生物传感中的应用。随着研究的深入,这一技术将为光学微操控开启全新的篇章。
姚保利研究员团队长期专注于光场调控、超分辨成像、光学微操控技术等领域的理论与实验研究。团队在《NatureCommunications》、《PNAS》、《PhysicalReviewLetters》等国际知名期刊上发表论文300余篇,授权多项国家发明专利,并承担了国家自然科学基金重大科研仪器研制项目、国家重大基础研究计划课题、国家重点研发计划课题等30余项重大科研任务,曾荣获陕西省科学技术一等奖、二等奖及重点科技创新团队等多项荣誉。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30