光纤照明为什么被称为机器视觉中的光学成像大功率王者
在机器视觉领域,光学成像的质量对于检测和识别的准确性至关重要。而光纤照明作为一种高效的照明方式,正在逐渐成为光学成像的大功率王者。本文将详细介绍光纤照明的优势、种类以及在视觉实践中的应用。
一、光纤照明的优势
传统的LED照明在半导体检测中虽然最高功率可达50W,但对于半导体行业的特定需求,其亮度仍然有限,且照明均匀度不佳。而灯箱搭配光纤的照明方式具有高均匀、高亮度的特点,能够轻松获得清晰准确的检测图像,因此被广泛应用于行业。
光纤照明的功率可以达到150W、330W甚至600W。由于光纤仅用于传输能量本身不发光,高亮灯箱搭配集束光纤照明既满足了高亮度的需求,又保证了优异的均匀性。这使得光纤照明在机器视觉领域具有独特的优势。
二、光纤的种类
光纤的照明效果并非固定不变,而是取决于采用的打光方式。常见的光纤种类包括:
(一)按结构分类
环形光纤:出光角度不同,可实现明场或暗场照明。
直型点状光纤:常用于同轴照明,可实现高角度或低角度斜向照明。
板型光纤:通常作为背光源使用,提供均匀的背景照明。
线型光纤:细长长方形出光面,搭配聚光镜使用,可实现线性照明。
多分支光纤:具有多个出光分支,适用于复杂的照明需求。
(二)按材料分类
石英光纤:具有良好的光学性能和耐高温特性,适用于高功率照明。
玻璃光纤:成本较低,适用于一般照明需求。
塑料光纤:柔韧性好,易于安装和使用,但光学性能相对较差。
(三)按功能特性分类
耐高温光纤:能够在高温环境下正常工作,适用于特殊的工业应用。
杂散排布光纤:通过特殊的排布方式减少杂散光,提高照明质量。
耐弯曲光纤:具有良好的柔韧性和耐弯曲性能,适用于需要频繁弯曲的场合。
三、光纤照明在视觉实践中的应用
(一)直型点状光纤
直型点状光纤插入镜头自带的内同轴照明插孔处,高角度斜向照明被测物时为明场照明,低角度斜向照明被测物时为暗场照明。
(二)线型光纤
线型光纤配聚光镜高角度斜向照明时为明场照明,低角度斜向照明时为暗场照明。线型光纤插入镜头线型同轴孔内,通过调整角度和聚光镜的使用,可以实现不同的照明效果。
(三)高角度/低角度环形光纤
高角度环形光纤架设在镜头下方较高物距处,为明场照明;低角度环形光纤架设在镜头下方低物距处,为暗场照明。通过调整环形光纤的角度和位置,可以实现不同的照明效果,满足不同的检测需求。
四、知识拓展
在视觉实践中,常见的照明光照射被测物的现象包括反射、折射和吸收。这些现象会影响最终的成像效果,因此在选择照明方式时需要充分考虑。
明暗场照明的命名源于其图像效果特点。“场”可以认为是背景,“明”表示明亮,“暗”表示灰暗。明场照明多为高角度照明光(45°-90°)直接照射被测物表面,暗场照明多为低角度照明光(0°-45°)斜侧方斜掠照射被测物表面。此外,还有一种背光照明,主要用于检测被测物的轮廓和边缘。
总之,光纤照明在机器视觉领域具有重要的应用价值。其高亮度、高均匀度的特点使其成为光学成像的大功率王者。通过合理选择光纤的种类和打光方式,可以实现不同的照明效果,满足各种检测和识别需求。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30