光纤照明为什么被称为机器视觉中的光学成像大功率王者
在机器视觉领域,光学成像的质量对于检测和识别的准确性至关重要。而光纤照明作为一种高效的照明方式,正在逐渐成为光学成像的大功率王者。本文将详细介绍光纤照明的优势、种类以及在视觉实践中的应用。

一、光纤照明的优势
传统的LED照明在半导体检测中虽然最高功率可达50W,但对于半导体行业的特定需求,其亮度仍然有限,且照明均匀度不佳。而灯箱搭配光纤的照明方式具有高均匀、高亮度的特点,能够轻松获得清晰准确的检测图像,因此被广泛应用于行业。
光纤照明的功率可以达到150W、330W甚至600W。由于光纤仅用于传输能量本身不发光,高亮灯箱搭配集束光纤照明既满足了高亮度的需求,又保证了优异的均匀性。这使得光纤照明在机器视觉领域具有独特的优势。
二、光纤的种类
光纤的照明效果并非固定不变,而是取决于采用的打光方式。常见的光纤种类包括:
(一)按结构分类
环形光纤:出光角度不同,可实现明场或暗场照明。
直型点状光纤:常用于同轴照明,可实现高角度或低角度斜向照明。
板型光纤:通常作为背光源使用,提供均匀的背景照明。
线型光纤:细长长方形出光面,搭配聚光镜使用,可实现线性照明。
多分支光纤:具有多个出光分支,适用于复杂的照明需求。
(二)按材料分类
石英光纤:具有良好的光学性能和耐高温特性,适用于高功率照明。
玻璃光纤:成本较低,适用于一般照明需求。
塑料光纤:柔韧性好,易于安装和使用,但光学性能相对较差。
(三)按功能特性分类
耐高温光纤:能够在高温环境下正常工作,适用于特殊的工业应用。
杂散排布光纤:通过特殊的排布方式减少杂散光,提高照明质量。
耐弯曲光纤:具有良好的柔韧性和耐弯曲性能,适用于需要频繁弯曲的场合。
三、光纤照明在视觉实践中的应用
(一)直型点状光纤
直型点状光纤插入镜头自带的内同轴照明插孔处,高角度斜向照明被测物时为明场照明,低角度斜向照明被测物时为暗场照明。
(二)线型光纤
线型光纤配聚光镜高角度斜向照明时为明场照明,低角度斜向照明时为暗场照明。线型光纤插入镜头线型同轴孔内,通过调整角度和聚光镜的使用,可以实现不同的照明效果。
(三)高角度/低角度环形光纤
高角度环形光纤架设在镜头下方较高物距处,为明场照明;低角度环形光纤架设在镜头下方低物距处,为暗场照明。通过调整环形光纤的角度和位置,可以实现不同的照明效果,满足不同的检测需求。
四、知识拓展
在视觉实践中,常见的照明光照射被测物的现象包括反射、折射和吸收。这些现象会影响最终的成像效果,因此在选择照明方式时需要充分考虑。
明暗场照明的命名源于其图像效果特点。“场”可以认为是背景,“明”表示明亮,“暗”表示灰暗。明场照明多为高角度照明光(45°-90°)直接照射被测物表面,暗场照明多为低角度照明光(0°-45°)斜侧方斜掠照射被测物表面。此外,还有一种背光照明,主要用于检测被测物的轮廓和边缘。
总之,光纤照明在机器视觉领域具有重要的应用价值。其高亮度、高均匀度的特点使其成为光学成像的大功率王者。通过合理选择光纤的种类和打光方式,可以实现不同的照明效果,满足各种检测和识别需求。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
