【前沿资讯】科学家利用水流突破质子束加速技术难题
在医学、微电子等领域,质子束的应用前景广阔,但产生超快、高能质子束却面临诸多挑战。如今,科学家们开发出一种突破性方法,利用高重复率激光等离子加速器产生快速、明亮的质子束,且这一切的助力竟是一股水流。

质子束是高速带电粒子流,能将能量精准沉积在特定位置,精度远超X射线等其他来源,在治疗肿瘤、蚀刻微芯片和半导体特征等方面极具价值。然而,传统粒子加速器如同步加速器,依靠电磁铁加速、控制和聚焦粒子束,体积庞大限制了其在工业和临床的应用。激光等离子加速器(LPA)应运而生,它用高强度激光撞击目标产生带电粒子束,速度可媲美传统加速器,但距离仅为其一小部分,有望成为紧凑、经济高效的质子束生成方式。不过,技术挑战接踵而至:高强度激光每次脉冲后会摧毁目标,需更换新目标,效率低下;且LPA产生的质子束通常发散严重,像泛光灯般散开,难以保持狭窄焦点。
在STFC卢瑟福阿普尔顿实验室的中央激光设施中,研究人员测试了由SLAC研究人员开发的新靶,以解决更换靶的低效率问题。他们创新性地引入一层薄薄的水,形成自补充水膜靶。当激光照射到水面上时,产生预期的质子束。更令人惊喜的是,蒸发的水在靶周围形成蒸汽云,与质子束相互作用产生磁场,自然聚焦光束,使其更亮、更紧密对齐。与固体靶实验相比,水片将质子束发散度降低一个数量级,效率提高一百倍,且质子束在数百次激光发射中表现出非凡稳定性,以每秒五个脉冲的速度运行。
这一突破改变了LPA技术范式,研究人员不再完全依赖模拟,可从实验角度推动物理研究,测试不同激光强度、目标密度和环境压力等。质子束每次发射持续释放相当于40格雷的辐射剂量,是质子治疗中标准剂量,而在此重复率下运行的LPA从未达到过。此外,这些成果是使用低能激光系统实现的,标志着LPA在医学和工业实际应用方面取得重大进步。
这项发表在《自然通讯》上的研究,为相对论高功率激光器在医学、加速器研究和惯性聚变领域的新应用铺平了道路,有望推动相关技术迈向更广阔的应用前景。
-
硅光、光模块与CPO的关联及核心特性分析
硅光、光模块、CPO这些高频出现的技术术语,背后承载着数据传输效率突破的核心逻辑。从传统通信网络到新一代数据中心,光传输技术的每一次革新都离不开材料、结构与封装方式的突破。本文将带你走进光传输技术的核心圈层,揭秘硅光技术如何推动光模块从分立组装走向共封装时代,以及这条进化之路上的关键突破与未来方向。
2025-12-31
-
铋基钙钛矿展现强非线性光学响应,推动全光器件发展
近日,燕山大学与南开大学联合研究团队在无铅钙钛矿非线性光学材料领域取得重要突破。相关成果以《空间自相位调制铋基钙钛矿的强非线性响应及其全光应用》为题,发表于国际知名期刊Laser&PhotonicsReviews(2025,19(8):2401929)。该研究不仅系统揭示了有机–无机杂化铋基钙钛矿在可见光波段的优异三阶非线性光学性能,还成功演示了其在全光开关与全光二极管等关键光子器件中的实际应用潜力。
2025-12-31
-
光学三大核心元件:平面镜、凸透镜与凹透镜的原理及应用探析
从日常梳妆的镜面反射到航天探测的精密成像,从视力矫正的光学器具到芯片制造的光刻技术,光学元件已深度融入人类生产生活与尖端科技领域。平面镜、凸透镜、凹透镜作为光学系统的三大核心基石,其基于光的反射与折射规律的工作机制,构建了现代光学技术的基础框架。本文将系统阐述三者的物理原理、设计规范、应用场景及发展趋势,展现基础光学元件的科学价值与技术魅力。
2025-12-31
-
TriAngle激光束准直:一看就懂的高精度光学校准方案
激光在工业加工(切割、焊接)、医疗设备(激光手术仪)、科研实验等场景中,都需要“走得直、聚得准”。如果激光束跑偏、发散,要么加工出来的产品不合格,要么医疗操作有风险,实验数据也会出错。
传统的激光校准靠人工慢慢调,又费时间又容易出错,环境稍微变一点(比如温度、振动)就不准了。而TriAngle是专门解决这个问题的设备,能让激光校准变得简单、快速又精准。2025-12-30
