【光学资讯】全息断层体积增材制造技术:3D打印的革命性突破
在传统3D打印领域,基于沉积材料层的技术虽已广泛应用,但其打印速度一直是制约效率的关键因素。而今,断层体积增材制造(TVAM)技术横空出世,为3D打印带来了前所未有的速度提升,然而它也面临着效率低下的难题。不过,这一困境在EPFL应用光子器件实验室与南丹麦大学光子工程中心的联合研究中得到了有效改善。
TVAM技术原本通过激光照射旋转的树脂瓶,使树脂在累积能量超过阈值后变硬,从而在短短几秒内制造出物体,相较于传统3D打印的约10分钟耗时,优势显著。但其约1%的编码光到达树脂的低效率问题,限制了其更广泛的应用。如今,研究人员巧妙地引入三维全息图投射技术,彻底改变了这一局面。
新方法中,全息图的运用取代了传统TVAM中对投射光波振幅的编码,转而利用光波的相位,这一转变意义非凡。EPFL的ChristopheMoser教授指出,所有像素输入均对全息图像的所有平面有所贡献,这不仅大幅提升了光效率,还优化了最终3D物体的空间分辨率,因为投影图案能够在投影深度中实现精准控制。
在实际研究中,团队仅用60秒便打印出了微型船、球体、圆柱体和艺术品等复杂3D物体,且精度极高,所用光功率仅为之前研究的1/25。这一成果背后,离不开HoloTile技术的助力。由南丹麦大学的JesperGlückstad教授发明的HoloTile,通过叠加多个所需投影图案的全息图,成功消除了散斑噪声,避免了颗粒状图像的产生,使得此次研究能够制造出高保真3D打印物体,这在全息体积增材制造领域尚属首次。
该全息方法还具备独特的自我修复特性,全息光束能够在树脂中传播而不受小颗粒干扰,这对于使用载有细胞的生物树脂和水凝胶进行3D打印极为关键,为生物医学应用开辟了广阔前景。EPFL的学生兼主要作者MariaIsabelAlvarez-Castaño表示,他们计划利用该方法构建生物结构的3D复杂形状,实现组织或器官真人大小模型的生物打印。
展望未来,研究团队目标明确,即进一步将该方法效率提升一倍。Moser教授透露,借助计算方面的改进,有望实现无需旋转树脂瓶的全息体积增材制造,这将极大简化制造流程,充分挖掘大批量、节能制造工艺的潜力。此外,标准商用设备对全息图的编码能力,也增强了该方法的实用性。
TVAM技术中的全息技术无疑为下一代高效、精确、快速的体积增材制造系统奠定了坚实基础,其在3D打印领域的革命性意义,正逐步显现,有望推动制造业迈向新的高度。
-
AI算力浪潮下的光模块行业核心赛道解析
信息通信技术的飞速发展推动着各个领域对数据传输的需求呈爆发式增长。光模块作为实现光电信号转换的核心器件,在AI算力狂飙的大背景下,已然成为备受瞩目的黄金赛道,其重要性在通信和数据中心等领域愈发凸显。
2025-06-09
-
微型芯片级激光器的技术突破及其多领域应用前景
2025年6月3日,美国罗切斯特大学与加州大学圣巴巴拉分校的联合研究团队宣布,成功研发出一款尺寸小于一美分硬币的微型激光设备。该成果在光学测量技术领域具有里程碑意义,其核心价值在于突破了传统光学计量系统的体积与成本瓶颈,为自动驾驶激光雷达系统(LiDAR)、引力波探测等对精密测量技术有极高需求的前沿领域,提供了具备实际应用价值的技术解决方案。
2025-06-06
-
多层纳米光子材料在光场调控中的研究进展与应用前景
在纳米光子学领域,光与物质相互作用的精准调控始终是推动光学器件革新的核心科学问题。多层纳米光子材料通过原子级精度的层状结构设计,将光场调控能力提升至纳米尺度与量子层级,为光学通信、能源转换、生物医学检测等前沿领域提供了革命性技术路径。本文系统阐述该类材料的光场调控机制、典型应用场景及产业化挑战,并展望其未来发展趋势。
2025-06-06
-
激光波动特性的研究突破与应用转化
激光作为现代光学领域的核心技术,其稳定性历来是科学研究与工业应用的关键考量指标。传统激光系统在特定场景下,常因环境扰动、介质非线性效应或量子涨落等因素,出现输出功率、频率或相位的波动现象。此类波动不仅制约了精密测量、光通信等领域的技术精度,亦对激光系统的可靠性构成挑战。近年来,国际研究团队在激光波动控制与转化领域取得系列突破性进展,为激光技术的革新提供了全新范式。
2025-06-06