【光学资讯】全息断层体积增材制造技术:3D打印的革命性突破
在传统3D打印领域,基于沉积材料层的技术虽已广泛应用,但其打印速度一直是制约效率的关键因素。而今,断层体积增材制造(TVAM)技术横空出世,为3D打印带来了前所未有的速度提升,然而它也面临着效率低下的难题。不过,这一困境在EPFL应用光子器件实验室与南丹麦大学光子工程中心的联合研究中得到了有效改善。

TVAM技术原本通过激光照射旋转的树脂瓶,使树脂在累积能量超过阈值后变硬,从而在短短几秒内制造出物体,相较于传统3D打印的约10分钟耗时,优势显著。但其约1%的编码光到达树脂的低效率问题,限制了其更广泛的应用。如今,研究人员巧妙地引入三维全息图投射技术,彻底改变了这一局面。
新方法中,全息图的运用取代了传统TVAM中对投射光波振幅的编码,转而利用光波的相位,这一转变意义非凡。EPFL的ChristopheMoser教授指出,所有像素输入均对全息图像的所有平面有所贡献,这不仅大幅提升了光效率,还优化了最终3D物体的空间分辨率,因为投影图案能够在投影深度中实现精准控制。
在实际研究中,团队仅用60秒便打印出了微型船、球体、圆柱体和艺术品等复杂3D物体,且精度极高,所用光功率仅为之前研究的1/25。这一成果背后,离不开HoloTile技术的助力。由南丹麦大学的JesperGlückstad教授发明的HoloTile,通过叠加多个所需投影图案的全息图,成功消除了散斑噪声,避免了颗粒状图像的产生,使得此次研究能够制造出高保真3D打印物体,这在全息体积增材制造领域尚属首次。
该全息方法还具备独特的自我修复特性,全息光束能够在树脂中传播而不受小颗粒干扰,这对于使用载有细胞的生物树脂和水凝胶进行3D打印极为关键,为生物医学应用开辟了广阔前景。EPFL的学生兼主要作者MariaIsabelAlvarez-Castaño表示,他们计划利用该方法构建生物结构的3D复杂形状,实现组织或器官真人大小模型的生物打印。
展望未来,研究团队目标明确,即进一步将该方法效率提升一倍。Moser教授透露,借助计算方面的改进,有望实现无需旋转树脂瓶的全息体积增材制造,这将极大简化制造流程,充分挖掘大批量、节能制造工艺的潜力。此外,标准商用设备对全息图的编码能力,也增强了该方法的实用性。
TVAM技术中的全息技术无疑为下一代高效、精确、快速的体积增材制造系统奠定了坚实基础,其在3D打印领域的革命性意义,正逐步显现,有望推动制造业迈向新的高度。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
