非接触式测量技术在光学元件检测中的优势
非接触式测量技术在光学元件检测中展现出诸多显著优势,使其成为光学制造、半导体、医疗设备等高精度领域的重要工具。以下是该技术的主要优势:
1.无损测量
非接触式测量技术通过光学原理进行测量,无需与被测物体进行物理接触,从而避免了因接触测量可能导致的表面损伤、变形或划痕。这对于高精度、高价值或易损的光学元件尤为重要,确保了元件在测量过程中的完整性和质量。
2.高精度与快速测量
非接触式测量技术通常能够提供微米级甚至更高的测量精度,并且测量速度较快,能够实现快速扫描和实时数据采集。例如,LensThick高精度非接触式光学测厚仪的精度可达±0.1微米,重复性达±0.02微米。这种高精度和快速测量能力对于提高生产效率和质量控制至关重要。
3.适用于复杂形状和微小特征
光学元件往往具有复杂的形状和微小的特征,非接触式测量技术能够有效应对这些挑战。例如,OptiSurf®LTM镜片厚度测量仪可以测量玻璃厚度高达150mm的单透镜和双透镜,精度为±0.5µm。此外,非接触式测量技术还可以测量各种透明或半透明材料的厚度,具有无损伤、高精度的特点。
4.详细的数据记录与分析
非接触式测量设备能够提供详细的三维数据记录,便于后续分析和3D建模。这对于光学元件的设计优化和质量改进非常有帮助。例如,LensThick光学测厚仪的操作简单,每次可轻松获得可靠的厚度值,并通过USB传输到PC,以图形的形式显示在用户界面。
5.环境适应性与灵活性
非接触式测量技术对环境要求相对较低,且设备通常具有较高的灵活性,能够适应不同的测量任务和复杂的测量环境。例如,OptiSurf®LTM测厚仪配备减振装置和自动定心机械夹具,减少了对样品的调整,测量过程可以安全、快速且不受操作员影响的情况下进行。
6.减少人为误差
由于非接触式测量主要依赖光学原理和自动化设备,测量过程不受人为因素影响,能够提供更一致和可靠的测量结果。这在批量生产和质量控制中尤为重要。
7.保护光学元件表面质量
光学元件的表面光洁度和形状对其光学性能至关重要。非接触式测量技术能够保护这些表面特性,确保光学元件在测量过程中不受损害。例如,OptiSurf®LTM对敏感表面和涂层温和,确保了元件的表面质量。
非接触式测量技术在光学元件检测中具有显著的优势,能够满足高精度、高效率和无损测量的需求,广泛应用于光学制造、半导体、医疗设备等多个领域。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30