国际团队研发新型电光频率梳集成设计
近日,一个由洛桑联邦理工学院(EPFL)、科罗拉多矿业学院和中国科学院的研究人员组成的国际团队在电光(EO)频率梳领域取得重要突破。该团队在TobiasJ.Kippenberg教授的带领下,成功研发了一种新的EO频率梳集成设计,显著扩展了频率梳的带宽并降低了其微波功率要求。这一成果有望在机器人、环境传感、光谱学、天文学等多个领域发挥重要作用。

一、创新设计与技术原理
该团队使用集成三重谐振架构创建了EO梳状发生器。该架构包含三个相互作用的场——两个光场和一个微波场,它们共同产生共振。研究人员在低双折射材料薄膜钽酸锂(LiTaO3)平台上将单片微波集成电路与光子集成电路(PIC)相结合,通过在基于LiTaO3的PIC上嵌入分布式共面波导谐振器,显著提高了微波限制和能量效率,将微波功率要求降低了近20倍。
传统上,铌酸锂(LiNbO3)被用于实现EO频率梳,但其具有有限的光谱覆盖范围,因为驱动非谐振电容电极所需的微波功率很大,并且LiNbO3具有很强的固有双折射,限制了梳子可实现的带宽。而LiTaO3的固有双折射比LiNbO3低17倍。通过采用集成三重谐振方法,该团队设计了一种紧凑型EO梳,具有宽带宽和低功耗要求。与传统的非谐振微波设计相比,新的梳状设计通过谐振增强的电光相互作用和LiTaO3中双折射的降低,实现了4倍梳状跨度扩展和16倍功率降低。
二、实验结果与性能表现
在实验中,新梳状设计的光谱覆盖范围超过450nm(超过60太赫兹),梳状线超过2000条,超出了当前EO频率梳技术的极限。梳状物可在90%的自由光谱范围内实现稳定运行,无需复杂的调谐机制。该设备使用简单的自由运行分布式反馈激光二极管进行操作,使其比克尔孤子梳更容易使用。此外,研究人员发现,强EO耦合可增加梳状物的存在范围,接近光学微谐振器的全部自由光谱范围。
三、研究意义与应用前景
该研究成功研发的新型EO频率梳集成设计,不仅显著扩展了频率梳的带宽,还大幅降低了其微波功率要求,为EO频率梳在多个领域的应用提供了新的可能性。其紧凑的尺寸和简单的操作方式,使其在需要精确激光测距的应用(如机器人技术)和精确传感至关重要的领域(如环境监测)中具有广阔的应用前景。此外,该团队用于共同设计微波和光子学的方法还可以扩展到一系列集成EO应用,为下一代设备的研发提供了新的思路。
未来,研究人员将继续探索该技术的潜力,进一步优化集成设计,提高性能,并推动其在更多领域的应用。这一新型EO频率梳集成设计的成功研发,为光学频率梳技术的发展注入了新的活力,有望在多个领域引发新的技术变革。
该研究发表在《自然》杂志上。
-
硅光、光模块与CPO的关联及核心特性分析
硅光、光模块、CPO这些高频出现的技术术语,背后承载着数据传输效率突破的核心逻辑。从传统通信网络到新一代数据中心,光传输技术的每一次革新都离不开材料、结构与封装方式的突破。本文将带你走进光传输技术的核心圈层,揭秘硅光技术如何推动光模块从分立组装走向共封装时代,以及这条进化之路上的关键突破与未来方向。
2025-12-31
-
铋基钙钛矿展现强非线性光学响应,推动全光器件发展
近日,燕山大学与南开大学联合研究团队在无铅钙钛矿非线性光学材料领域取得重要突破。相关成果以《空间自相位调制铋基钙钛矿的强非线性响应及其全光应用》为题,发表于国际知名期刊Laser&PhotonicsReviews(2025,19(8):2401929)。该研究不仅系统揭示了有机–无机杂化铋基钙钛矿在可见光波段的优异三阶非线性光学性能,还成功演示了其在全光开关与全光二极管等关键光子器件中的实际应用潜力。
2025-12-31
-
光学三大核心元件:平面镜、凸透镜与凹透镜的原理及应用探析
从日常梳妆的镜面反射到航天探测的精密成像,从视力矫正的光学器具到芯片制造的光刻技术,光学元件已深度融入人类生产生活与尖端科技领域。平面镜、凸透镜、凹透镜作为光学系统的三大核心基石,其基于光的反射与折射规律的工作机制,构建了现代光学技术的基础框架。本文将系统阐述三者的物理原理、设计规范、应用场景及发展趋势,展现基础光学元件的科学价值与技术魅力。
2025-12-31
-
TriAngle激光束准直:一看就懂的高精度光学校准方案
激光在工业加工(切割、焊接)、医疗设备(激光手术仪)、科研实验等场景中,都需要“走得直、聚得准”。如果激光束跑偏、发散,要么加工出来的产品不合格,要么医疗操作有风险,实验数据也会出错。
传统的激光校准靠人工慢慢调,又费时间又容易出错,环境稍微变一点(比如温度、振动)就不准了。而TriAngle是专门解决这个问题的设备,能让激光校准变得简单、快速又精准。2025-12-30
