【光学资讯】上海交通大学邹卫文教授团队研发模拟域光子宽带并行处理器
近日,上海交通大学邹卫文教授团队在光子技术领域取得重要进展,成功研发出一种模拟域光子宽带并行处理器。该成果为多功能一体化系统中的高效信号处理提供了创新技术路线,有望推动无人驾驶、物联网等智能感知系统的发展。

一、研究背景
在现代智能感知系统中,如无人驾驶和物联网等,需要处理海量、多样化、多功能的信息。传统的多功能一体化系统通过在不同功能之间共享硬件平台,实现了信息资源的高效共享,但电子器件的带宽和计算速度限制了系统在更广阔范围内的信息获取与交互。因此,开发一种能够在模拟域直接处理宽带信号的并行处理器成为解决这一问题的关键。
二、创新研究
邹卫文教授团队提出了一种基于硅光子平台的模拟域并行处理器(APP),能够在模拟域将大带宽信号重构至2N路并行处理,实现数据速率和数据量的成倍压缩,从而降低单计算核心的运算速率与容量要求。该处理器芯片设计研制成功,并在多功能应用场景下验证了其通用处理能力。
1.技术原理
模拟域光子并行处理原理示意图如图1所示。该处理器利用光子学方法,在模拟域将宽带信号重构为多路并行信号,通过光子并行处理技术,实现传输速率与数据量的成倍压缩。这种技术路线有效降低了单计算核心的运算能力需求,为多功能一体化系统中的高效信号处理提供了创新解决方案。
2.实验验证
实验结果表明,模拟域光子宽带并行处理器芯片成功实现了对宽带雷达信号和复杂调制格式高速通信信号的处理。在雷达功能验证中,对6GHz瞬时带宽线性调频信号完成并行脉冲压缩,得到2.69cm的高精度距离分辨率;在通信功能验证中,8Gbit/s的16QAM信号也基于该芯片完成了星座图解调。此外,通过对比两种功能下并行处理与直接处理的结果,验证了其处理性能的一致性,实验结果表明,该并行处理方式在雷达距离分辨率和通信误码率上均表现出出色的等效性。

三、研究意义
该研究成功研发的模拟域光子宽带并行处理器,为多功能一体化系统中的高效信号处理提供了创新技术路线。该处理器能够在模拟域直接处理宽带信号,实现数据速率和数据量的成倍压缩,有效降低单计算核心的运算能力需求。这一技术突破有望推动无人驾驶、物联网等智能感知系统的发展,为未来多功能一体化系统的宽带化发展提供了新的可能性。

四、未来展望
未来,邹卫文教授团队将进一步探索该架构的阵列化多通道潜力,加速模拟域光子宽带并行处理器向先进光子并行处理器发展,促进通感一体、智能驾驶等应用的升级换代。这一技术的进一步发展,将为智能感知系统提供更高效、更灵活的信号处理解决方案,推动相关领域的技术进步。
五、论文信息
该研究成果于2025年2月发表在《Light:Science&Applications》上。论文共同第一作者为上海交通大学钱娜助理研究员和周德福博士生,通讯作者为上海交通大学邹卫文教授。该工作得到了国家自然科学基金、上海市科委扬帆计划等项目的支持。
总之,邹卫文教授团队的这一突破性成果,不仅在理论上具有重要意义,也为未来智能感知系统的发展提供了新的技术路径。我们期待这一技术能够在更多领域得到应用,为人类社会的智能化发展做出更大贡献。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
