【光学前沿】光纤传感技术取得重大突破!国外大学研发新型传感策略
在当今科技飞速发展的时代,光纤传感技术作为一项关键的监测手段,在众多领域发挥着重要作用。近日,横滨国立大学的研究团队在这一领域取得了令人瞩目的成果,成功研发出一种基于聚合物光纤(POF)的新型分布式温度传感策略,为高分辨率传感应用开辟了新的道路。

突破传统限制,提升空间分辨率
分布式光纤传感器基于布里渊散射原理,广泛应用于测量光纤沿线的应变和温度变化。然而,噪声干扰和传感光纤的物理特性等因素,长期制约着传感器空间分辨率的提升。横滨国立大学的研究人员针对这一难题,开发出使用聚合物光纤(POF)来增强分布式温度传感空间分辨率的创新策略。他们采用的基于POF的布里渊光学相关域反射法(BOCDR)新方法,在短距离内成功检测到温度变化,为短传感长度领域的高分辨率传感应用带来了新希望,如医疗保健和制造业等。
精准检测,实验成果显著
在研究过程中,研究人员巧妙地利用调制幅度和传感光纤长度之间的关系,实现了高空间分辨率的分布式温度传感。为了将调制幅度提高到超出常规极限,他们缩短了光纤相对于测量范围的长度,有效抑制了瑞利散射引起的噪声。实验中,他们选用了全氟渐变折射率POF,这种材料凭借其高温度灵敏度和低应变灵敏度,成为精确温度测量的理想选择。值得一提的是,全氟渐变折射率POF的纤芯直径较小(50至120µm),在电信波长下光传播损耗低至每米约0.25分贝,是唯一一种成功观察到布里渊散射的POF。
实验结果显示,研究人员利用该技术高精度地检测出聚合物光纤上7.0厘米长的冷却部分,充分证明了该技术在实际应用中监测温度变化的能力。更令人振奋的是,该团队在BOCDR中实现了约4.8厘米的理论空间分辨率,成功超越了以往的限制。
展望未来,拓展应用潜力
对于这项研究成果,YosukeMizuno教授表示:“我们的工作突破了分布式光纤传感中空间分辨率的界限,解决了这一关键挑战。通过优化调制幅度和光纤长度,我们为高分辨率温度传感开辟了新的可能性,这在结构健康监测和工业过程控制等领域可能具有重要应用。”
未来,研究人员计划进一步探索如何在保持高空间分辨率的同时延长传感长度,并尝试使用该技术测量压力和湿度等其他物理参数。他们还致力于改进该系统,使其能够在基础设施监控和工业诊断等关键应用中实际使用。Mizuno教授满怀信心地表示:“这一突破代表了光纤传感技术的重大进步。我们非常高兴能够继续改进这种方法,并探索其应对现实挑战的潜力。”
该研究成果已发表在《光纤技术》期刊上,有望为分布式传感技术的未来发展带来新的变革和机遇。
-
硅光、光模块与CPO的关联及核心特性分析
硅光、光模块、CPO这些高频出现的技术术语,背后承载着数据传输效率突破的核心逻辑。从传统通信网络到新一代数据中心,光传输技术的每一次革新都离不开材料、结构与封装方式的突破。本文将带你走进光传输技术的核心圈层,揭秘硅光技术如何推动光模块从分立组装走向共封装时代,以及这条进化之路上的关键突破与未来方向。
2025-12-31
-
铋基钙钛矿展现强非线性光学响应,推动全光器件发展
近日,燕山大学与南开大学联合研究团队在无铅钙钛矿非线性光学材料领域取得重要突破。相关成果以《空间自相位调制铋基钙钛矿的强非线性响应及其全光应用》为题,发表于国际知名期刊Laser&PhotonicsReviews(2025,19(8):2401929)。该研究不仅系统揭示了有机–无机杂化铋基钙钛矿在可见光波段的优异三阶非线性光学性能,还成功演示了其在全光开关与全光二极管等关键光子器件中的实际应用潜力。
2025-12-31
-
光学三大核心元件:平面镜、凸透镜与凹透镜的原理及应用探析
从日常梳妆的镜面反射到航天探测的精密成像,从视力矫正的光学器具到芯片制造的光刻技术,光学元件已深度融入人类生产生活与尖端科技领域。平面镜、凸透镜、凹透镜作为光学系统的三大核心基石,其基于光的反射与折射规律的工作机制,构建了现代光学技术的基础框架。本文将系统阐述三者的物理原理、设计规范、应用场景及发展趋势,展现基础光学元件的科学价值与技术魅力。
2025-12-31
-
TriAngle激光束准直:一看就懂的高精度光学校准方案
激光在工业加工(切割、焊接)、医疗设备(激光手术仪)、科研实验等场景中,都需要“走得直、聚得准”。如果激光束跑偏、发散,要么加工出来的产品不合格,要么医疗操作有风险,实验数据也会出错。
传统的激光校准靠人工慢慢调,又费时间又容易出错,环境稍微变一点(比如温度、振动)就不准了。而TriAngle是专门解决这个问题的设备,能让激光校准变得简单、快速又精准。2025-12-30
