重大突破!JILA研发新型矢量光泵磁强计,测量精度大幅提升
2025年2月7日消息,光泵磁强计(OPM)在很多领域都派得上大用场,像生物传感、检查违禁品、磁通信,甚至在寻找暗物质的时候也能发挥作用,还被看作是量子增强测量的一把好手。不过,OPM有个麻烦,它原本只能做标量运算,想要做出精确的矢量磁强计可不容易,因为标量OPM得靠外部参考才能知道方向信息。虽说标量测量在不少时候够用了,但要是对精度要求特别高,矢量OPM的精准校准就显得格外重要。
最近,由科罗拉多大学博尔德分校和美国国家标准与技术研究所一起成立的JILA研究团队可厉害了,成功做出了一种新型矢量OPM。这个新仪器有个独特本领,它能利用铷原子流形之间驱动的拉比振荡,测量出磁场相对于微波场极化椭圆结构的方向。
研究人员先找了一个气室,里面装着大概一千亿个变成蒸汽状态的铷原子,然后把气室放在微波信号下面。接着,再用磁场冲击气室,这时候气室里的原子就会发生偏移。最后,研究人员用激光去测量原子能量的变化。辛迪・雷加尔教授打了个比方:“原子就像一个装满信息的大仓库,我们就像寻宝人,从它们身上挖掘信息,这样就能知道磁场有没有小变化,还有磁场到底朝着哪个方向。”
雷加尔教授还说,当原子被微波信号撞到的时候,它内部结构就会“晃悠”起来,这种“晃悠”可藏着大学问。“我们只要解读好这些‘晃悠’,就能知道原子能量变化的强度,自然也就知道磁场方向了。”在这次研究里,团队通过观察原子能量变化,也就是原子的“晃悠”,把磁场方向的测量精度提高到了接近百分之一度。
研究团队只靠原子测量,就能发现微波矢量参考里的漂移,还能把那些系统性偏移给修正过来。为了让仪器在任何角度都能正常工作,他们还想出了用缀合态共振的拉比测量方法。这次测量是在蒸气室平台里做的,对于差不多50微特斯拉的地磁场强度,平均矢量精度达到了0.46毫弧度,矢量灵敏度低到每平方根赫兹11微弧度,比现在好多用原子蒸气和电磁矢量参考的OPM方法都要厉害。研究员道森・休瓦特形象地说:“每个原子就像一个小指南针,我们有十亿个小指南针,合在一起就能变成超精确的测量工具。”
从以后的用处来看,这些研究成果以后能用来做量子传感器,比如画出大脑活动的图,帮飞机找准方向。斯文亚・克纳普教授说:“磁成像可神奇了,它能让我们探测到藏在又密又不透光地方的信号源,不管是在水下、混凝土下面,还是在脑袋里都没问题。”和那些用久了零件会变的机械设备不一样,原子一直都是稳定的。
现在,团队打算在把新型矢量OPM真正用起来之前,再把它的精度提高提高。研究人员盼着以后飞机驾驶员能用上基于原子蒸气的矢量OPM,通过追踪地球磁场的细微变化来给飞机导航,就像候鸟靠着天生的生物磁传感器找路一样。克纳普教授说:“现在大家都在想,我们到底能把这些原子系统的能力发挥到什么程度。”
这项超厉害的研究成果已经发表在《Optica》杂志上了,给矢量OPM的发展和应用打开了全新的大门。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30