南方科技大学徐少林教授团队在玻璃微结构制造领域取得重大突破
玻璃材料因其独特的性能在光学和光电子器件的应用领域中扮演着不可或缺的角色。近日,南方科技大学徐少林教授团队在玻璃微结构制造领域取得了一项重大突破,成功开发出一种新型三维多焦点激光直写技术,为玻璃表面三维微结构的制造带来了更高的自由度和效率,这一成果有望在光学和光电子器件制造中发挥重要作用。
一、玻璃材料制造面临的挑战
玻璃材料因其低成本以及优异的机械和光学性能,被广泛应用于各类光学和光电子器件制造。然而,玻璃的硬脆性和低导热性给大面积多样化玻璃微槽结构的制造带来了极大挑战,尤其是实现微槽截面形状的高度可控制造。传统的制造方法难以满足高精度、高效率的加工需求,这成为了制约玻璃微结构制造领域发展的瓶颈。
二、新型三维多焦点激光直写技术的诞生
南方科技大学机械与能源工程系徐少林教授团队针对这一难题,开发出了一种新型三维多焦点激光直写技术。该技术通过基于透镜和光栅相位图叠加的光束整形技术,实现了三维空间的多焦点能量和位置的高度自由调控。具体来说,研究人员利用特定排布规律的多焦点并行直写,在玻璃内部形成改质层,再结合化学蚀刻剥离轮廓外材料,从而制造出轮廓高度可调的玻璃微结构。通过算法修正,该技术克服了折射率引起的偏差和球面像差,确保了多焦点位置的精确性。
三、技术优势与创新点
这一新型技术具有多项优势和创新点。首先,它通过随机化激光焦点的坐标,消除了等距激光焦点排列造成的能量不均匀性,更好地匹配了目标轮廓。其次,将具有适当点间距的均匀激光焦点阵列在玻璃内部烧蚀改性,形成连通的裂纹,实现了沿着修饰轮廓的高效蚀刻,制造出表面微结构。此外,化学刻蚀作用进一步获得了更加平滑的表面。这些创新使得该技术在制造玻璃微结构时,能够实现更高的精度和更好的表面质量。
四、实验成果与应用前景
研究人员通过该技术制造出了多种槽状阵列,其轮廓包括梯形、半圆形和三角形,表面粗糙度约为1.3μm,深宽比高达3:1,深度可达300μm。这些成果展示了该技术在制造复杂截面形状玻璃微结构方面的强大能力。此外,该技术还成功应用于光模块中光纤封装用玻璃支架的制造,证明了其在实际应用中的可行性和潜力。
五、团队实力与研究方向
徐少林教授团队自2017年成立以来,一直致力于超快激光微纳制造领域的研究,涵盖了光束时空整形技术、光与材料相互作用机理、激光加工超表面、激光诱导纳米光栅、激光引导化学刻蚀等多个方向。团队包括博士后、科研助理、在读博士和硕士研究生等20余人,已发表论文40余篇,涵盖了《NatureCommunications》《Optica》《Laser&PhotonicsReviews》等知名期刊。团队的研究课题与大湾区高科技企业的需求密切联系,获得了工业界合作伙伴的大力支持。
南方科技大学徐少林教授团队的这一研究成果,不仅在学术上具有重要意义,更为玻璃微结构制造领域带来了新的希望。随着这项技术的不断发展和完善,相信它将在光学和光电子器件制造中发挥越来越重要的作用,为相关产业的发展注入新的活力。未来,我们期待看到更多基于这一技术的创新应用,为人类的科技进步做出更大的贡献。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30