南方科技大学徐少林教授团队在玻璃微结构制造领域取得重大突破
玻璃材料因其独特的性能在光学和光电子器件的应用领域中扮演着不可或缺的角色。近日,南方科技大学徐少林教授团队在玻璃微结构制造领域取得了一项重大突破,成功开发出一种新型三维多焦点激光直写技术,为玻璃表面三维微结构的制造带来了更高的自由度和效率,这一成果有望在光学和光电子器件制造中发挥重要作用。

一、玻璃材料制造面临的挑战
玻璃材料因其低成本以及优异的机械和光学性能,被广泛应用于各类光学和光电子器件制造。然而,玻璃的硬脆性和低导热性给大面积多样化玻璃微槽结构的制造带来了极大挑战,尤其是实现微槽截面形状的高度可控制造。传统的制造方法难以满足高精度、高效率的加工需求,这成为了制约玻璃微结构制造领域发展的瓶颈。
二、新型三维多焦点激光直写技术的诞生
南方科技大学机械与能源工程系徐少林教授团队针对这一难题,开发出了一种新型三维多焦点激光直写技术。该技术通过基于透镜和光栅相位图叠加的光束整形技术,实现了三维空间的多焦点能量和位置的高度自由调控。具体来说,研究人员利用特定排布规律的多焦点并行直写,在玻璃内部形成改质层,再结合化学蚀刻剥离轮廓外材料,从而制造出轮廓高度可调的玻璃微结构。通过算法修正,该技术克服了折射率引起的偏差和球面像差,确保了多焦点位置的精确性。
三、技术优势与创新点
这一新型技术具有多项优势和创新点。首先,它通过随机化激光焦点的坐标,消除了等距激光焦点排列造成的能量不均匀性,更好地匹配了目标轮廓。其次,将具有适当点间距的均匀激光焦点阵列在玻璃内部烧蚀改性,形成连通的裂纹,实现了沿着修饰轮廓的高效蚀刻,制造出表面微结构。此外,化学刻蚀作用进一步获得了更加平滑的表面。这些创新使得该技术在制造玻璃微结构时,能够实现更高的精度和更好的表面质量。
四、实验成果与应用前景
研究人员通过该技术制造出了多种槽状阵列,其轮廓包括梯形、半圆形和三角形,表面粗糙度约为1.3μm,深宽比高达3:1,深度可达300μm。这些成果展示了该技术在制造复杂截面形状玻璃微结构方面的强大能力。此外,该技术还成功应用于光模块中光纤封装用玻璃支架的制造,证明了其在实际应用中的可行性和潜力。
五、团队实力与研究方向
徐少林教授团队自2017年成立以来,一直致力于超快激光微纳制造领域的研究,涵盖了光束时空整形技术、光与材料相互作用机理、激光加工超表面、激光诱导纳米光栅、激光引导化学刻蚀等多个方向。团队包括博士后、科研助理、在读博士和硕士研究生等20余人,已发表论文40余篇,涵盖了《NatureCommunications》《Optica》《Laser&PhotonicsReviews》等知名期刊。团队的研究课题与大湾区高科技企业的需求密切联系,获得了工业界合作伙伴的大力支持。
南方科技大学徐少林教授团队的这一研究成果,不仅在学术上具有重要意义,更为玻璃微结构制造领域带来了新的希望。随着这项技术的不断发展和完善,相信它将在光学和光电子器件制造中发挥越来越重要的作用,为相关产业的发展注入新的活力。未来,我们期待看到更多基于这一技术的创新应用,为人类的科技进步做出更大的贡献。
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
