【光学前沿】锁模Mamyshev振荡器中的相干记忆与失忆现象
在现代光学研究中,锁模激光器作为一种能够产生超短脉冲的关键技术,广泛应用于多个领域,包括非线性光谱学、光学原子钟、系外行星成像仪等。锁模激光器的核心在于其时间模式的自组织过程,这一过程通常始于量子噪声。然而,如何在锁模激光器中按需控制瞬态脉冲动力学和相对脉冲定时仍然是一个亟待解决的挑战。最近,曹博等人在《Optica》杂志上发表的研究成果为这一问题提供了新的思路,他们研究了锁模Mamyshev振荡器中的相干记忆和失忆现象,并展示了通过外部脉冲种子控制锁模建立动力学的可能性。

一、研究背景
锁模激光器通过将非相干自发辐射通过耗散和非线性作用引导成相干超短脉冲来实现时间模式的自组织。这一过程通常从量子噪声开始,但如何控制这一过程以实现特定的脉冲动力学和定时仍然是一个难题。Mamyshev振荡器作为一种特殊的锁模激光器,其工作原理基于Mamyshev再生器,通过级联多个再生器形成具有阶梯状动力传输的可饱和吸收体,从而实现锁模。这种振荡器的激光阈值高于锁模阈值,因此在种子脉冲到达之前,初始逆种群(反粒子数)会累积到不同的水平,这为控制锁模建立动力学提供了一个新的途径。
二、研究方法
曹博等人通过实验和数值模拟相结合的方法,研究了从相干脉冲种子开始的锁模Mamyshev振荡器中的自组织动力学。他们发现,在锁模转换过程中,种子的相干性可以被记住或失忆,这取决于初始的逆总体。为了记录快速变化的光学相位并表征这两种过渡路径,研究人员开发了一种外差技术,用于实时记录相干跃迁路径。
三、实验结果
实验中,研究人员观察到锁模振荡器可以在相干记忆或带有脉冲种子的相干失忆状态下运行。具体来说:
1.相干失忆
当初始逆总体处于非常高的水平时,注入的脉冲光谱可以被强烈地加宽并变得结构化。同时,来自脉冲种子的锁模强制频谱相位关系被随机化,波形在时域中失真。谱幅度和相位都随机变化,直到达到稳定的锁模状态。这一过程被称为“相干失忆”。在实验中,当滤波器间距为6nm,泵浦功率为0.9W时,种子脉冲被急剧放大,导致光谱急剧加宽和失真。经过约400次往返后,光谱突然变窄并稳定下来。
2.相干记忆
相比之下,当初始逆总体不是很大时,谱不会急剧拓宽,稳定的锁模可以快速收敛。在这种转变中,保持完整脉冲所需的相位相干性得到了很好的保留,这一过程被称为“相干记忆”。实验中,当滤波器间距减小到3nm,泵浦功率减小到0.7W时,种子脉冲被温和放大,振荡器迅速收敛到相干状态,没有经过混沌转变。
3.耗散孤子分子的合成
研究人员进一步展示了如何利用观察到的相干跃迁路径来合成具有可控间距的耗散孤子分子。在相干记忆路径中,可以通过脉冲对种子确定地合成耗散孤子分子。实验中,当种子脉冲间距大于6.2ps时,振荡器会记住种子的间距;当种子脉冲间距小于6.2ps时,间距会被推向6.2ps的平台。这一现象表明,脉冲间隔也存在一种“失忆”机制。
4.脉冲重构与比特存储
除了耗散孤子分子之外,研究人员还展示了如何通过外部脉冲种子实现脉冲重构和比特存储。实验中,研究人员成功将额外的脉冲写入已容纳锁模脉冲的振荡器中,并通过外部脉冲种子擦除原始脉冲。此外,研究人员还成功将编码的脉冲序列写入振荡器,展示了全光比特存储的可能性。
曹博等人的研究为锁模激光器中按需控制瞬态脉冲动力学和相对脉冲定时铺平了道路。通过外部脉冲种子,研究人员能够控制锁模建立动力学,实现相干记忆和失忆之间的切换。这一成果不仅为光学原子钟、非线性光谱学、系外行星成像仪等领域提供了新的技术手段,还为理解自组织动力学提供了新的视角。此外,该研究还展示了脉冲种子在脉冲重构和比特存储方面的潜力,为未来光学通信和量子计算等领域的发展提供了新的思路。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
