【光学前沿资讯】外国实验室创造最亮X射线源
近日,美国一实验室(LLNL)的研究人员通过结合国家点火装置(NIF)的X射线激光和超轻金属泡沫,成功制造出迄今为止最亮的X射线源,其亮度是以往固体金属版本的两倍。

这种超高亮度、高能量的X射线可用于成像和研究极端高密度物质,例如惯性约束聚变实验中产生的等离子体。LLNL科学家杰夫·科尔文(JeffColvin)将这种X射线源比作牙医用于检测龋齿的设备。他解释说:“牙医的设备通过将电子束撞击重金属板来产生X射线。在NIF,我们用高功率激光束代替电子束,将其‘撞击’银原子,从而产生等离子体并发出X射线。”
研究人员将NIF的激光束聚焦于毫米级的圆柱形银泡沫靶材上,通过加热产生X射线。实验中选择银作为靶材至关重要,因为金属原子的原子序数越高,产生的X射线能量也就越高。团队选择银是为了制造能量超过20,000电子伏特的X射线。
此外,金属泡沫的结构也是实现这一目标的关键。研究人员制造了直径为4毫米的圆柱形靶材,使用模具和银纳米线完成制造。LLNL研究员泰勒·费尔斯(TylerFears)表示:“我们将悬浮在溶液中的纳米线冻结在模具中,然后通过超临界干燥工艺去除溶液,最终得到低密度多孔金属泡沫。”科尔文补充道:“我们制造的银泡沫密度约为固体密度的1/1000,仅略高于空气密度。”
在这种泡沫结构中,NIF激光能够加热更大体积的材料,热量传播速度也比在固体中快得多。整个泡沫圆柱在大约15亿分之一秒内被加热。
除了制造X射线源外,研究人员还探索了不同泡沫密度对能量输出的影响,并应用了一种新的数据分析技术来理解生成等离子体的物理特性。通过对数据的分析,他们发现这些明亮、高温的金属等离子体远未达到热平衡。通常用于研究NIF惯性约束聚变的模型假设等离子体接近平衡,电子、离子和光子的温度大致相同。
科尔文指出:“这一发现意味着我们需要重新思考关于这些特定金属等离子体中热量传输的假设以及计算方法。”
这项研究已发表在《物理评论E》上。这一成果不仅为高能量密度物理研究提供了新的工具,也为未来惯性约束聚变实验和极端条件下的物质研究开辟了新的可能性。
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
