新加坡国立大学在光片动态散射成像技术上获得新突破
微循环成像技术在生物医学研究和临床诊断中扮演着至关重要的角色,尤其是在监测血流分布、微血管健康和组织灌注状况方面。微循环的变化往往是多种疾病的早期信号,因此,开发一种能够实时、无标记、高分辨率地监测微循环的技术一直是生物医学成像领域的研究热点。最近,新加坡国立大学陈南光教授团队提出了一种新型的光片动态散射成像(LSH-DSI)技术,为这一领域带来了突破性的进展。
一、现有技术的局限性
传统的微循环成像技术,如光学相干断层扫描(OCT)、光声成像(PAI)、激光多普勒流速仪(LDF)和激光散斑成像(LSI),在临床和研究中得到了广泛应用,但它们在实时性、定量性、分辨率和动态范围方面仍存在显著不足。例如,OCT技术虽然能够提供较好的血流信息,但难以定量测量血流速度;PAI技术在动态成像方面速度较慢,限制了其在实时监测中的应用;LDF和LSI技术则因空间分辨率较低或缺乏轴向信息而难以满足复杂病理状态下的需求。
二、光片动态散射成像技术的创新
为克服现有技术的局限性,陈南光教授团队开发了光片动态散射成像(LSH-DSI)技术。该技术结合了光片显微镜的光学切片特性和动态散射光分析的优点,能够在不增加背景噪声的情况下,实现高精度和高速度的实时成像。光片显微镜通过一束激光光片照射样本,实现局部区域的成像,并同时捕获整个照明平面的图像。与传统的共聚焦显微镜相比,光片显微镜具有更高的成像速度,适用于快速获取较大区域的三维图像。
LSH-DSI技术的核心在于将光片显微镜与激光散斑成像技术相结合。通过时频分析方法,LSH-DSI能够量化血流速度,并与粒子成像测速(PIV)数据进行比较,验证了其在血流速度定量评估上的准确性。这种技术不仅能够成像微血管的结构,还能实时监测血流速度的变化,为研究复杂的微循环网络提供了强大的工具。
三、实验验证与结果
研究人员通过斑马鱼胚胎和幼虫模型对LSH-DSI技术进行了实验验证。实验结果表明,LSH-DSI能够准确捕捉到微血流的动态变化,并提供比传统成像技术更高的深度层析能力。与传统技术相比,LSH-DSI技术在三维实时成像方面表现出色,能够精确地观察到血流的动态变化及其在微血管中的分布情况。
LSH-DSI技术的应用前景广阔,尤其在微循环监测和疾病早期诊断方面具有重要意义。在神经科学、心血管疾病、糖尿病和癌症等领域,微循环的变化往往是疾病发生的早期信号。LSH-DSI技术不仅能够帮助研究人员更深入地了解这些疾病的发病机制,还可以为临床医生提供实时、精准的微血管信息,助力个性化治疗方案的制定。随着技术的不断优化,LSH-DSI有望成为微循环成像的标准工具,推动精准医疗的发展。
光片动态散射成像(LSH-DSI)技术的出现为微循环成像领域带来了新的希望。通过结合光片显微镜的光学切片特性和动态散射光分析的优点,LSH-DSI技术在实时性、定量性和分辨率方面均表现出色,为研究微循环的动态变化提供了强大的工具。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30