透射式和反射式定心仪有什么区别?
透射式定心仪和反射式定心仪在工作原理、测量对象、精度、适用范围等方面存在一些区别,以下是具体介绍:

一、工作原理
透射式定心仪:使一束光通过被测镜片,同时旋转主轴,利用传感器测量光束透过镜片后像点的运动轨迹来分析偏心量。
反射式定心仪:利用回转轴系作为测量基准,通过自准直仪与前置镜的配合来实现镜片的定心。光源发出的光通过前置镜聚焦在其焦面上,形成分划板的像,通过调整定心仪的轴向位置,使分划板的像与被测表面的球心重合。当主轴旋转时,通过被测镜片表面反射的光束的像点运动轨迹被测量,从而计算出中心偏差。
二、测量对象
透射式定心仪:可以对整个透镜进行测量,但无法针对透镜的每个面进行单独测量。
反射式定心仪:接收了透镜每个透镜球面的反射像,偏心反映了单面的偏心。
三、精度
透射式定心仪:精度相对较高,但有时会受到一些因素的干扰,如当透镜的两个面偏心方向不同时,可能会相互补偿,使得焦点位置无偏心,但实际上透镜是偏心的。
反射式定心仪:灵敏度较高,测量精度也较高,定心精度可达0.005mm,主要用于直径小、曲率半径小的透镜的定心。反射方法是全面和正确的偏心误差的测量方法。
四、适用范围
透射式定心仪:适用于对透镜整体偏心进行测量的场合,操作相对简单,测量速度快。
反射式定心仪:适用于对透镜单面偏心测量精度要求高的场合,如高级镜头的高精度装调。但其视场较小,找像困难,且对导轨与机床主轴的平行度要求高。
-
硅光、光模块与CPO的关联及核心特性分析
硅光、光模块、CPO这些高频出现的技术术语,背后承载着数据传输效率突破的核心逻辑。从传统通信网络到新一代数据中心,光传输技术的每一次革新都离不开材料、结构与封装方式的突破。本文将带你走进光传输技术的核心圈层,揭秘硅光技术如何推动光模块从分立组装走向共封装时代,以及这条进化之路上的关键突破与未来方向。
2025-12-31
-
铋基钙钛矿展现强非线性光学响应,推动全光器件发展
近日,燕山大学与南开大学联合研究团队在无铅钙钛矿非线性光学材料领域取得重要突破。相关成果以《空间自相位调制铋基钙钛矿的强非线性响应及其全光应用》为题,发表于国际知名期刊Laser&PhotonicsReviews(2025,19(8):2401929)。该研究不仅系统揭示了有机–无机杂化铋基钙钛矿在可见光波段的优异三阶非线性光学性能,还成功演示了其在全光开关与全光二极管等关键光子器件中的实际应用潜力。
2025-12-31
-
光学三大核心元件:平面镜、凸透镜与凹透镜的原理及应用探析
从日常梳妆的镜面反射到航天探测的精密成像,从视力矫正的光学器具到芯片制造的光刻技术,光学元件已深度融入人类生产生活与尖端科技领域。平面镜、凸透镜、凹透镜作为光学系统的三大核心基石,其基于光的反射与折射规律的工作机制,构建了现代光学技术的基础框架。本文将系统阐述三者的物理原理、设计规范、应用场景及发展趋势,展现基础光学元件的科学价值与技术魅力。
2025-12-31
-
TriAngle激光束准直:一看就懂的高精度光学校准方案
激光在工业加工(切割、焊接)、医疗设备(激光手术仪)、科研实验等场景中,都需要“走得直、聚得准”。如果激光束跑偏、发散,要么加工出来的产品不合格,要么医疗操作有风险,实验数据也会出错。
传统的激光校准靠人工慢慢调,又费时间又容易出错,环境稍微变一点(比如温度、振动)就不准了。而TriAngle是专门解决这个问题的设备,能让激光校准变得简单、快速又精准。2025-12-30
