水下光无线通信取得新突破!能否照亮深海通信的未来?
在深邃的海洋中,通信技术一直是人类探索和利用海洋资源的关键。近年来,水下光无线通信技术以其高带宽、低延迟等优势,逐渐成为水下通信领域的研究热点。本文将为您详细介绍水下光无线通信的最新进展,带您领略这一前沿技术的魅力。

一、海洋光学特性:通信的基础
水体的光学性质分为固有特性和表观特性。固有特性,如衰减系数(c),仅取决于介质的光学参数,用于描述光功率的损失,包括散射和吸收。表观特性则还取决于环境光源的构成,用于计算海洋表面附近通信系统的环境光照度。海水的衰减系数值在海洋中变化高达4个数量级,与波长有关,特定水体的成分可改变通信链路的理想传输波长。此外,海水的体折射率(n)也是关键因素,它是真空中的光速与特定介质中的光速之比,用于确定方向特性。海洋表面及以下存在折射率梯度,受压力、颗粒物浓度、海水湍流等因素影响。
二、光学重要成分:影响通信的关键因素
海水中含有的物质可分为溶解物质和颗粒物质,这些物质影响了特定水体的光学特性值,进而导致衰减系数在整个海洋中可以取很大范围的值。纯海水在大部分电磁波谱中的吸收系数很高,但在400-700nm的可见光区域存在低衰减窗口,允许有效通信。溶解的有机物质、颗粒有机物和无机颗粒等成分,都会对光的传播产生影响。例如,颗粒有机物中的叶绿素是影响光学特性的主要成分,其浓度的变化会改变理想的透射波长。
三、固有属性变化:通信环境的动态挑战
洋流运动、颗粒物浓度和环境光照状态的变化,使作为传输介质的海水的光学性能发生显著变化。这些变化通常分为空间变化和时间变化,在局部和全球范围内都是如此。例如,叶绿素浓度在赤道沿岸、海岸线和高纬度海洋较高,远海的典型叶绿素浓度在0.01-4.0mg/m3之间,而近岸水平可能高达60mg/m3。整个海洋的折射率也会因温度和盐度的变化而变化,折射率的极值分别为1.32913和1.36844。
四、链路配置:多样化的通信方案
为了适应不同的水下环境,研究人员开发了多种链路配置。视距系统使用窄光束发散发射机,是最简单的配置。在浑浊的沿海地区,非定向视距配置通过广角视野补偿增加的衰减,黄绿色LED最适合这种场景。反射链路适用于接收器功率太低而无法支持完整的收发时,通过改变返回信号的偏振来克服散射光与反射信号无法区分的问题。非视距连接则利用海面反射,假设发射机和接收机自对准,选择传输信号的角度,使其大于海洋界面处的临界角,以确保发生全内反射。
五、实验实现:从理论到实践的跨越
多年来,研究人员进行了大量实验,以将水下无线光通信概念落实为商业上可用的产品。信噪比(SNR)和最大比特率(BR)是衡量通信性能的关键指标。实验数据表明,激光二极管更有可能实现高数据速率。例如,Snow等人使用基于激光的系统在9m的链路长度上发送50Mbps的信号。Hanson和Radic在2m的测试槽中实现了1Gbps的传输速率。WoodsHole海洋研究所的研究人员在100m处成功获得了10Mbps的传输速率。Pontbriand等人在200m长的清水中实现了5Mbps的传输速率,在浑浊的水中实现了1Mbps的传输速率。麻省理工学院设计并建造了名为AquaOptical的调制解调器,在清水中获得1.2Mbps的最大传输速率。北卡罗来纳州立大学的研究人员使用三个白色LED实现了7m链路长度的10Mbps的传输速率,或在误差校正下的5Mbps的传输速率。
六、未来展望
光无线通信技术在水下中短程链路中展现出了巨大的潜力。在深海中,海水中的颗粒物和溶解物质浓度最低,光的传播主要由纯水的吸收影响,其理想的透射波长约为430nm。在这些黑暗环境中的通信链路通常距离较长,并使用低视场激光发射器和相对较大的接收器。然而,在考虑深度相关的折射率梯度的情况下,持续追踪通信仍是一个挑战。在海洋表面和沿海水域,颗粒物的浓度增加,理想波长向光谱的黄绿色部分移动,其光衰减主要由散射决定,但也可被宽视场发射器利用。随着技术的不断进步,水下光无线通信有望在海洋探索、资源开发、环境保护等领域发挥重要作用,开启深海通信的新纪元。
水下光无线通信技术的发展,不仅为我们提供了更高效的水下通信手段,也为人类进一步探索海洋奥秘提供了强大的技术支持。
-
磷化铟激光器与光子集成的技术演进、产业格局与未来方向
磷化铟(InP)作为电信波段激光器的核心材料,凭借其独特的光电特性,在光通信、数据中心、量子技术等领域占据不可替代的地位。随着光子集成技术的不断突破,InP相关技术正从传统电信领域向多场景拓展,成为支撑下一代信息通信技术发展的关键力量。埃因霍温理工大学MartijnHeck教授作为全球光子集成领域的权威专家,基于其数十年的研究与产业实践经验,对InP技术趋势、产业现状及学术定位作出了系统性阐释,为行业发展提供了重要参考。
2025-12-22
-
什么是远像技术?重塑室内用眼场景,助力近视科学防控
长时间室内看近已成为普遍生活状态——学生需上网课、读写作业,上班族要紧盯电脑、处理文案,长时间近距离用眼带来的视觉疲劳与近视风险,成为亟待解决的健康难题。在此背景下,“远像技术”凭借“化近为远”的核心逻辑,为室内舒适用眼提供了科学解决方案,更推动近视防控理念从被动矫正向主动干预升级。
2025-12-22
-
色散波捷变光频分技术:微梳基低相位噪声微波信号源的突破性进展
光频分技术凭借光学域谐振系统的卓越频率稳定性,正推动计时与高性能电信号源领域的技术革新。美国加州理工学院Qing-XinJi、WeiZhang及KerryVahala等研究人员提出一种基于色散波捷变微梳的两点光频分(2P-OFD)技术,成功实现了具有创纪录低相位噪声的微波信号源。该系统通过三耦合环结构微梳发射的频率可调单模色散波定义光谱端点,以高Q因子全固态无真空法布里-珀罗腔为频率基准,结合混合封装技术,在光子芯片平台上达成了优异的相位噪声性能与长期稳定性。相关研究成果发表于《NaturePhotonics》,为微梳基信号源跻身大型微波源性能梯队、实现现场部署奠定了关键基础。
2025-12-22
-
平面反射镜与球面镜面形检测的核心技术差异探析
在光学工程与精密制造领域,面形精度是决定光学元件光束传输效率、成像质量及系统稳定性的核心指标。平面反射镜与球面镜作为两类基础且应用广泛的光学核心部件,因其几何结构的本质差异,在面形检测的技术原理、核心指标体系、检测方法及设备要求等方面形成显著区别。本文从技术本质出发,系统剖析二者的检测差异,为高精度光学制造、检测及系统集成提供理论与工程实践参考。
2025-12-19
