深度学习计算成像:数据驱动与物理驱动的较量与融合
在计算成像领域,深度学习方法正引发一场技术革命。其中,数据驱动和物理驱动作为两大主流策略,各自展现出独特的优势与挑战。本文将深入探讨这两种策略在深度学习相位恢复中的应用,以及它们的对比与融合,帮助读者更好地理解这一领域的最新进展。
一、背景介绍
相位恢复是计算成像中的一个经典逆问题,其目标是从强度测量中恢复光波相位,进而定量分析样品的生物物理特性。这一技术在生物医学成像、自适应光学、相干衍射成像和精密测量等多个领域都有着广泛的应用。近年来,深度学习方法为相位恢复带来了新的活力,数据驱动和物理驱动成为实现这一目标的两种主要策略。
二、数据驱动与物理驱动的原理
1.数据驱动(Data-driven,DD)
数据驱动方法通过实验或模拟获取的训练数据集,包含数千到数十万的全息图-相位配对数据,这些数据中隐含了从全息图到相位的隐式先验。在监督模式下,神经网络通过这些数据进行训练,通常需要数小时甚至数天的时间。训练完成后,待测样品的全息图输入到训练好的神经网络中,可以快速推断出光波相位。
2.物理驱动(Physics-driven,PD)
物理驱动方法使用数值传播方程作为显式先验,引导神经网络的收敛。与数据驱动不同,物理驱动方法通过数值传播方程将神经网络输出从相位域转换到全息图域后计算损失函数。物理驱动方法可以分为三种优化方式:未训练的PD(uPD)、训练的PD(tPD)和带有微调的tPD(tPDr)。
(1)未训练的PD(uPD):直接对初始化/未训练的神经网络进行迭代优化,从待测样品的全息图中推断光波相位,无需预训练。
(2)训练的PD(tPD):使用数值传播方程和纯全息图组成的数据集训练神经网络,然后使用训练好的神经网络从待测样品的全息图中快速推断光波相位。
(3)带有微调的tPD(tPDr):结合uPD和tPD的优势,使用待测样品的全息图和数值传播方程对预训练的神经网络进行迭代微调,进而推断光波相位。
三、数据驱动与物理驱动的对比
1.耗时
数据驱动(DD):需要数小时甚至数天的时间进行预训练。
训练的PD(tPD):同样需要数小时甚至数天的时间进行预训练。
带有微调的tPD(tPDr):需要数小时甚至数天的时间进行预训练,但微调过程相对较快。
未训练的PD(uPD):无需预训练,可以直接在初始化的神经网络上对待测样品进行推理,推断过程需要数分钟的迭代时间。
2.精度
数据驱动(DD):预训练后使用神经网络进行快速推断,精度较高。
训练的PD(tPD):预训练后使用神经网络进行快速推断,精度与DD基本相同。
带有微调的tPD(tPDr):由于引入了更多的先验知识,初始推断更接近目标解,以更少的推断周期获得与uPD相同的精度。
未训练的PD(uPD):通过迭代优化推断光波相位,精度较高,但推断过程需要数分钟的迭代时间。
3.泛化能力
数据驱动(DD):泛化能力受训练数据集的影响较大。使用ImageNet和LFW数据库训练的神经网络在多个测试数据集上表现较好,而使用MNIST数据库训练的神经网络在推断细节信息时表现较差。
物理驱动(PD):由于使用数值传播方程作为先验知识,uPD和tPDr适用于任何分布的待测样品,泛化能力较强。
病态适应能力
数据驱动(DD):可以同时推断相位和强度,因为从全息图到相位和强度的隐式映射关系完全包含在用于训练神经网络的配对数据集中。
物理驱动(PD):从全息图中同时推断相位和强度是严重不适定的,推断结果中会出现明显的伪影。通过引入更多物理约束可以一定程度上缓解这种不适定性。
4.先验容纳能力
数据驱动(DD):使用配对数据集训练神经网络,可以学习数据集中包含的所有隐式先验,即使这些先验位于数值传播之外。例如,在成像系统存在系统像差的情况下,DD可以在去除系统像差的同时推断出样本相位。
物理驱动(PD):推断结果中同时包括来自样品和系统像差的相位,无法有效分离系统像差。
三、数据与物理联合驱动策略
为了平衡高频和低频信息,研究人员提出了一种数据和物理联合驱动策略。通过在损失函数中加权联合配对数据集和数值传播方程,可以同时利用数据驱动的低频信息和物理驱动的高频信息,从而提高相位恢复的精度和鲁棒性。
深度学习相位恢复方法在计算成像领域展现出巨大的潜力。数据驱动和物理驱动策略各有优势,通过联合驱动策略可以更好地平衡高频和低频信息,提高相位恢复的精度和鲁棒性。未来,随着研究的不断深入,这两种策略的融合将为计算成像技术带来更多的创新和突破。
希望这篇文章能够满足您的需求,如果您有任何其他要求或需要进一步修改,请随时告诉我。
-
超短脉冲激光加工系统:精密制造领域的效率突破与技术革新
随着对加工精度、材料适应性的要求不断提升,超短脉冲(Ultra-ShortPulse,USP)激光器凭借其独特的脉冲特性——脉冲持续时间可压缩至皮秒甚至飞秒级别,能够有效抑制热影响区(Heat-AffectedZone,HAZ)、降低材料损伤,已成为微加工领域的关键技术手段。近十年来,USP激光器的加工稳定性与操作灵活性持续优化,加工质量已满足诸多高端应用场景需求,但在工业应用场景中,“效率瓶颈”始终是制约其规模化推广的核心问题。为突破这一限制,研究人员不仅从激光器本体出发(如提升脉冲能量、提高脉冲重复率),更在激光能量管理领域开展深度研究,通过创新的光束控制、整形与分发技术,为USP激光加工技术的工业化应用注入新动能。
2025-09-16
-
激光器相位调制技术的原理、实现与应用解析
从超高速相干光通信到精密光学传感,再到量子计算与原子物理研究,激光的“相位”特性正成为承载信息、实现精准控制的核心载体。不同于直接改变光强的强度调制,激光相位调制(PhaseModulation,PM)通过精准调控激光相位的动态变化,实现了更高效、抗干扰能力更强的信息传输与信号处理,已成为高性能光电子系统的关键支撑技术
2025-09-16
-
为什么必须重视显微镜物镜MTF测量?
在生命科学研究的细胞观察、材料科学的微观结构分析、医疗诊断的病理切片研判中,显微镜物镜是决定“看得清、看得准”的核心部件——其成像分辨率、视场均匀性、畸变控制直接影响实验结论与应用效果。而如何科学量化这一核心性能?光学传递函数(MTF)作为国际公认的成像质量“金标准”,正是显微镜物镜性能检测的关键技术;而欧光科技代理的德国TRIOPTICSImageMaster系列MTF测量仪,更成为赋能显微镜物镜研发与量产的“性能校准专家”。
2025-09-15
-
反射镜技术的原理、分类、结构及应用特性解析
反射镜作为利用光的反射特性调控光路的关键光学元件,广泛应用于日常生活、工业制造及前沿科研领域——从民用梳妆镜、汽车后视镜,到工业激光设备、天文观测系统,其功能实现均以精准引导光线传播为核心目标。本文基于光的反射定律,系统梳理反射镜的分类体系,拆解其核心组成结构,全面阐述该类光学元件的技术特性与应用适配逻辑。
2025-09-15