什么是激光摆动焊接技术?为什么说它是现代制造业的革新力量
在现代制造业中,焊接技术的精度和效率直接关系到产品的质量和生产成本。传统焊接方法在面对复杂结构和高精度要求时,往往显得力不从心。激光焊接技术的出现,为制造业带来了新的希望,但其在焊接异种材料和复杂形状零部件时,仍存在孔隙、裂纹等缺陷。为了解决这些问题,激光摆动焊接技术应运而生,成为现代制造业中的一项重要革新。
什么是激光摆动焊接?
激光摆动焊接,又称激光扫描焊接,是一种通过控制系统对激光束的摆动模式、频率和幅度进行精确调控的先进焊接技术。该技术的主要装置包括激光器、激光头(准直单元、聚焦单元、振荡单元和控制单元)以及冷水机等。其工作原理是:激光束通过准直单元后,入射到两个装有反射镜的光束偏转器上,由振镜电机控制,沿X、Y轴使光束偏转器转动,从而实现光束任意方向的偏转。经过聚焦单元后,激光束可以精确地发射到工件表面的各个部位,通过控制单元对振镜电机的控制,实现规律性偏转,达成在工件表面沿周期性扫描轨迹进行激光焊接的目的。
激光摆动焊接的优势
1.提高焊接间隙的容忍度
传统激光焊接时,激光束能量高度集中,形成的熔池相对较窄,对间隙要求严苛,通常间隙控制在板厚的10%以下。而激光摆动焊接的最大间隙远超传统,无填充焊料时约为工件厚度的25%,有填充时可达315%。这在汽车制造中焊接不同厚度板材拼接的车身部件,或电子设备生产中连接多层电路板时,具有显著优势,大大提高了装配的灵活性和生产效率。
2.优化焊缝宽度与熔深
激光摆动焊接利用振荡激光束扩大熔池表面,从而增加焊缝宽度,降低熔深。熔池中的振荡会产生湍流,增强对流并改善传热。实验数据表明,特定材料焊接时,孔隙率可从传统的10%降至1.5%。这种优化不仅提高了焊接质量,还减少了焊接缺陷,提升了产品的整体性能。
3.有效控制焊接缺陷
裂纹控制:激光束振荡重新分配了熔池热量,降低温度梯度与热应力集中程度,减少裂纹萌生几率,延长焊接结构的疲劳寿命。同时,振荡促使热影响区晶粒细化与均匀生长,形成更多的等轴晶,增强焊缝抗裂纹能力,阻碍裂纹扩展,降低裂纹敏感性。
气孔控制:激光摆动焊接中,激光束振荡引发熔池强烈湍流与对流,改变了熔池内液体流动特性,为气体逸出提供有效通道,加速气泡上浮与逸出,降低孔隙率。均匀的能量分布确保材料稳定熔化与凝固,减少因能量不均致局部飞溅、气体卷入形成孔隙的风险,提升焊缝致密性与质量稳定性,尤其在铝合金、钛合金等对孔隙敏感材料焊接中成效显著。
关键焊接参数
1.激光功率
激光功率决定工件的热输入,与熔深、焊缝宽呈正相关。对1050铝合金板焊接实验显示,功率从200W升至800W时,熔深和焊缝宽均增大。因此,合理选择激光功率是确保焊接质量的关键因素之一。
2.焊接速度
焊接速度影响熔池的凝固与冶金特性。焊接速度的增加会导致晶粒尺寸的减小,主要是由于激光摆动焊接过程中熔池内湍流增强,增加的湍流会导致熔池中存在的未熔融晶粒破碎,导致晶粒尺寸减小。适当的焊接速度可以优化焊缝的微观结构,提高焊接质量。
3.摆动频率
摆动频率是激光摆动焊接中的关键参数,影响熔池行为与焊缝质量。
减小热裂敏感性:增加摆动频率可促进等轴晶的生长,从而阻止裂纹萌生。
降低飞溅程度:高频振荡引起的强烈搅拌效应,促进熔化材料的均匀流动,防止飞溅形成。
匙孔变得更宽、更浅:降低匙孔坍塌的可能性,并防止气孔在焊缝中形成。因此,优化摆动频率可以显著提高焊接质量和稳定性。
4.摆动幅度
摆动幅度影响熔池形状与焊缝结晶。不同的摆动模式可以实现不同的焊接效果,选择合适的摆动幅度和模式,可以进一步优化焊缝的几何形状和微观结构,提高焊接质量。
应用案例
1.电池制造
在电池制造中,激光摆动焊接技术可以有效改善焊缝裂纹和气孔缺陷,确保电池的安全性和性能。例如,电池铜元器件的焊接,通过激光摆动焊接可以实现无气孔、裂纹的高质量焊接,提高电池的可靠性和寿命。
2.热换热器制造
热换热器的制造要求焊缝具有良好的密封性和高强度。激光摆动焊接技术在换热器外部和截面的焊接中表现出色,不仅改善了焊缝外观和质量,还确保了内部结构的完整性和密封性。此外,管角接头的焊接也通过激光摆动焊接技术实现了高质量连接,提高了换热器的整体性能。
3.异种材料焊接
激光摆动焊接技术在异种材料焊接中也展现了显著优势。例如,不锈钢与铜的焊接,传统焊接方法往往难以实现高质量的连接,而激光摆动焊接可以有效解决这一问题,实现异种材料的高质量焊接,满足不同应用场景的需求。
激光摆动焊接技术通过精确调控激光束的摆动模式、频率和幅度,显著提高了焊接质量和效率。其在现代激光加工制造业的应用,特别是在航空航天、汽车制造、电池制造和热换热器制造等高端领域,展示了巨大的潜力和价值。通过优化焊接参数,可以进一步提升焊接质量,满足不同应用场景的高精度和高效率要求,为现代制造业的发展提供了强大的技术支持。
-
光学镜头加工三大核心技术解析
光学镜头作为现代科技领域的关键组件,广泛应用于消费电子、工业检测、航空航天及科研等诸多领域,其加工技术直接影响产品性能。目前,光学镜头加工主要依托注塑成型法、模压成型法及冷加工成型法三大核心技术,三者在精度控制、生产效率及适用场景上各具特点,共同构成了光学制造领域的技术体系。
2025-07-04
-
LPO与CPO光互连技术的双线演进,将开启怎样的发展路径?
在数据中心算力需求呈爆发式增长的背景下,光互连技术正经历前所未有的变革。线性驱动可插拔光学(LPO)与共封装光学(CPO)作为两条并行的技术主线,从不同维度推动光互连向更低功耗、更高密度、更优成本方向演进,正重塑数据中心的底层架构逻辑。
2025-07-04
-
暨南大学研究揭示镁铝异种焊接接头的交替电偶腐蚀机制
在汽车、航空航天等领域轻量化需求持续增长的背景下,镁(Mg)合金与铝(Al)合金的异种连接已成为制约相关技术发展的关键挑战。近日,暨南大学科研团队在国际期刊《CorrosionScience》发表重要研究成果,创新性采用激光-电弧复合焊接技术结合钛(Ti)夹层,成功突破传统焊接技术瓶颈,并首次系统揭示了镁铝异种接头在腐蚀过程中的电偶腐蚀极性反转机制,为轻量化结构的长效应用提供了重要理论支撑与技术参考。
2025-07-04
-
阶跃折射率双包层光纤:低损耗紧凑型光子灯笼的突破性进展
随着虚拟现实、物联网及云计算等技术的迅猛发展,传统标准单模光纤传输系统正逐步接近其容量极限。模分复用技术通过将线偏振或轨道角动量模式作为独立传输信道,成为突破容量瓶颈的关键途径。在此背景下,高性能的模式复用/解复用器成为该技术实用化的核心支撑,而光子灯笼凭借低损耗、工作波长范围宽等优势,已成为该领域的研究焦点。
2025-07-04