浙江大学超紧凑铌酸锂光子芯片取得捅破,可实现高效密集波分复用传输
随着数据中心和5G通信系统的飞速发展,对超高容量数据传输的需求日益增长。波分复用(WDM)技术,作为提升光通信链路容量的核心手段,已被广泛应用于现代光通信系统中。在众多光子技术中,绝缘体上铌酸锂(LNOI)光子芯片因其卓越的电光效应,成为实现高带宽、低功耗需求的密集波分复用(DWDM)系统的理想平台。

一、技术突破:超紧凑LNOI光子芯片
浙江大学戴道锌教授团队在《Advanced Photonics》2024年第6期发表了的研究文章,首次提出了一种用于DWDM发射器的紧凑型LNOI光子芯片。该芯片通过创新性地采用超紧凑的2×2法布里–珀罗(FP)腔体电光调制器,成功克服了传统LNOI光学发射器在实现窄通道间隔和高性能滤波器方面的技术瓶颈。
二、性能特点:窄通道间隔与高数据传输速率
该LNOI光子芯片实现了业界领先的1.6nm通道间隔,并支持高达400Gbps的总数据传输速率,同时展现出卓越的电光带宽和低功耗特性。这种光子芯片不仅实现了目前LNOI光学发射器中最窄的通道间隔,还具备较大的电光带宽,支持4×80Gbps的开关键控(OOK)信号以及4×100Gbps的四电平脉冲幅度调制(PAM4)信号。
三、集成度与功耗:显著降低与提升
该光子芯片展现了更高的集成度和显著降低的功耗,为未来大容量光通信和光互连提供了高效紧凑的解决方案,具有广阔的应用前景。这一技术突破不仅提升了光通信系统的容量与性能,还为未来大容量光互连和超高速通信系统的开发奠定了坚实基础。
四、应用前景:数据中心与5G网络
该研究有望推动光子技术在数据中心、5G网络及下一代通信系统中的广泛应用,为实现更高效、更经济的光互连架构开辟新路径。随着光子技术的进步,我们有望见证数据中心和通信网络在传输效率和成本效益上的显著提升。
浙江大学戴道锌教授团队的这项研究标志着光子芯片技术在实现高效密集波分复用传输方面迈出了重要一步。通过创新的光子芯片架构,该团队不仅提升了光通信系统的性能,也为光子技术在未来通信领域的应用提供了新的可能性。随着这些技术的进一步发展和应用,我们有理由相信,光子芯片将在推动全球通信技术进步中发挥关键作用。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
