西安交通大学研发3D打印OAM光束发生器,助力5G/6G网络升级
2024年12月24日,西安交通大学的科研团队开发了一种创新的3D打印设备,该设备能够产生具有轨道角动量(OAM)的扭曲光束,为5G/6G无线网络的数据容量和可靠性带来显著提升。
一、突破传统限制,提高通信效率
当前,5G/6G无线网络对高容量、抗干扰通信系统的需求日益增长。然而,传统的涡旋光束发生器存在效率低、制造成本高和易受干扰的问题。西安交通大学的这项研究提供了一个创新的解决方案,通过3D打印技术制造出高效、紧凑且低成本的OAM光束发生器。
二、集成增益滤波功能,优化信号传输
该设备不仅能够产生高容量的涡旋光束,还具有集成增益滤波功能,可以放大所需信号的同时阻止干扰,确保传输的清晰和高效。这一特性对于提高频谱效率和通信容量至关重要。
三、3D打印技术,实现低成本制造
研究人员利用选择性激光熔化技术,使用铝合金3D打印出原型设备,这种单片结构的设计无需组装,降低了制造成本,并确保了组件的精确对齐。此外,使用充气全金属结构来避免介电损耗,从而确保更高的辐射效率和更大的功率处理能力。
四、实验测试验证,性能优异
实验测试显示,原型设备实现了所需的光束特性,模式纯度约为80%,并表现出较高的带外抑制性能,超过30dB,显著降低干扰并确保清晰的信号传输。
五、未来应用前景广阔
该OAM光束发生器特别适合5G/6G无线通信以及遥感和成像。例如,将这种设备集成到通信塔中可以改善大型聚会如音乐节或体育赛事的流媒体和在线连接,在这些场合,高用户密度通常会使现有网络不堪重负。
这项突破性研究成果已发表在《OpticsExpress》期刊上.
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30