【光学前沿】暨南大学研发微型光纤光谱仪,为痕量气体监测领域带来技术突破
[2024年12月27日,广州]——暨南大学的最新科研成果,一种微型一体化光纤光谱仪(FPAS),在痕量气体传感领域取得了革命性的进展。该设备无需使用谐振气室,即可实现十亿分之一(ppb)级别的检测限,为环境监测、工业过程控制和生物医学诊断等领域带来了新的技术突破。

一、微型化与高性能的完美结合
FPAS以其微型化设计和高灵敏度检测能力脱颖而出。该设备体积小、灵敏度高,且对样品量要求极低,能够以微型探针的形式提供实验室级别的精度。这一特点使其在狭窄空间中也能进行实时监测,极大地扩展了光谱仪的应用场景。
二、快速响应,精准监测
FPAS的响应时间仅为18毫秒,空间分辨率高达160微米,相较于传统光声光谱系统,其空间和时间分辨率提升了2至3个数量级。这使得FPAS能够进行超快速测量,为实时监测提供了强有力的技术支持。
三、低样品量,高效率
传统光谱系统需要较大量的样品,而FPAS仅需亚纳升大小的样品量,与传统系统相比减少了3至4个数量级。这一创新使得FPAS在常规实时原位痕量气体测量中更具优势,为二维气体流动浓度测绘和体内血管内血气监测等新应用提供了可能。
四、血管内气体监测的新突破
FPAS在血管内气体监测方面展现出巨大潜力。研究人员已成功将FPAS通过注射器插入大鼠尾静脉,实时追踪血管中溶解的CO2水平。这一成果凸显了FPAS无需采集血样即可实时监测血管内血气的潜力,为缺氧和高碳酸条件下的CO2水平测量提供了新的解决方案。
五、经济高效,易于集成
FPAS使用的光纤可以连接到低成本的分布式反馈激光源,并与现有的光纤网络集成,使其成为一种经济高效、紧凑、灵活的光谱解决方案。这不仅降低了成本,也提高了系统的灵活性和可扩展性。
六、广泛的应用前景
除了血管内血气监测,FPAS的潜在应用还包括锂离子电池的微创健康评估和极窄空间内爆炸性气体泄漏的远程检测。这些应用将进一步推动工业和医学领域的技术进步。
这项突破性研究成果已发表在国际知名学术期刊《AdvancedPhotonics》上
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
