【光学前沿】暨南大学研发微型光纤光谱仪,为痕量气体监测领域带来技术突破
[2024年12月27日,广州]——暨南大学的最新科研成果,一种微型一体化光纤光谱仪(FPAS),在痕量气体传感领域取得了革命性的进展。该设备无需使用谐振气室,即可实现十亿分之一(ppb)级别的检测限,为环境监测、工业过程控制和生物医学诊断等领域带来了新的技术突破。

一、微型化与高性能的完美结合
FPAS以其微型化设计和高灵敏度检测能力脱颖而出。该设备体积小、灵敏度高,且对样品量要求极低,能够以微型探针的形式提供实验室级别的精度。这一特点使其在狭窄空间中也能进行实时监测,极大地扩展了光谱仪的应用场景。
二、快速响应,精准监测
FPAS的响应时间仅为18毫秒,空间分辨率高达160微米,相较于传统光声光谱系统,其空间和时间分辨率提升了2至3个数量级。这使得FPAS能够进行超快速测量,为实时监测提供了强有力的技术支持。
三、低样品量,高效率
传统光谱系统需要较大量的样品,而FPAS仅需亚纳升大小的样品量,与传统系统相比减少了3至4个数量级。这一创新使得FPAS在常规实时原位痕量气体测量中更具优势,为二维气体流动浓度测绘和体内血管内血气监测等新应用提供了可能。
四、血管内气体监测的新突破
FPAS在血管内气体监测方面展现出巨大潜力。研究人员已成功将FPAS通过注射器插入大鼠尾静脉,实时追踪血管中溶解的CO2水平。这一成果凸显了FPAS无需采集血样即可实时监测血管内血气的潜力,为缺氧和高碳酸条件下的CO2水平测量提供了新的解决方案。
五、经济高效,易于集成
FPAS使用的光纤可以连接到低成本的分布式反馈激光源,并与现有的光纤网络集成,使其成为一种经济高效、紧凑、灵活的光谱解决方案。这不仅降低了成本,也提高了系统的灵活性和可扩展性。
六、广泛的应用前景
除了血管内血气监测,FPAS的潜在应用还包括锂离子电池的微创健康评估和极窄空间内爆炸性气体泄漏的远程检测。这些应用将进一步推动工业和医学领域的技术进步。
这项突破性研究成果已发表在国际知名学术期刊《AdvancedPhotonics》上
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
