【光学前沿】暨南大学研发微型光纤光谱仪,为痕量气体监测领域带来技术突破
[2024年12月27日,广州]——暨南大学的最新科研成果,一种微型一体化光纤光谱仪(FPAS),在痕量气体传感领域取得了革命性的进展。该设备无需使用谐振气室,即可实现十亿分之一(ppb)级别的检测限,为环境监测、工业过程控制和生物医学诊断等领域带来了新的技术突破。

一、微型化与高性能的完美结合
FPAS以其微型化设计和高灵敏度检测能力脱颖而出。该设备体积小、灵敏度高,且对样品量要求极低,能够以微型探针的形式提供实验室级别的精度。这一特点使其在狭窄空间中也能进行实时监测,极大地扩展了光谱仪的应用场景。
二、快速响应,精准监测
FPAS的响应时间仅为18毫秒,空间分辨率高达160微米,相较于传统光声光谱系统,其空间和时间分辨率提升了2至3个数量级。这使得FPAS能够进行超快速测量,为实时监测提供了强有力的技术支持。
三、低样品量,高效率
传统光谱系统需要较大量的样品,而FPAS仅需亚纳升大小的样品量,与传统系统相比减少了3至4个数量级。这一创新使得FPAS在常规实时原位痕量气体测量中更具优势,为二维气体流动浓度测绘和体内血管内血气监测等新应用提供了可能。
四、血管内气体监测的新突破
FPAS在血管内气体监测方面展现出巨大潜力。研究人员已成功将FPAS通过注射器插入大鼠尾静脉,实时追踪血管中溶解的CO2水平。这一成果凸显了FPAS无需采集血样即可实时监测血管内血气的潜力,为缺氧和高碳酸条件下的CO2水平测量提供了新的解决方案。
五、经济高效,易于集成
FPAS使用的光纤可以连接到低成本的分布式反馈激光源,并与现有的光纤网络集成,使其成为一种经济高效、紧凑、灵活的光谱解决方案。这不仅降低了成本,也提高了系统的灵活性和可扩展性。
六、广泛的应用前景
除了血管内血气监测,FPAS的潜在应用还包括锂离子电池的微创健康评估和极窄空间内爆炸性气体泄漏的远程检测。这些应用将进一步推动工业和医学领域的技术进步。
这项突破性研究成果已发表在国际知名学术期刊《AdvancedPhotonics》上
-
硅光、光模块与CPO的关联及核心特性分析
硅光、光模块、CPO这些高频出现的技术术语,背后承载着数据传输效率突破的核心逻辑。从传统通信网络到新一代数据中心,光传输技术的每一次革新都离不开材料、结构与封装方式的突破。本文将带你走进光传输技术的核心圈层,揭秘硅光技术如何推动光模块从分立组装走向共封装时代,以及这条进化之路上的关键突破与未来方向。
2025-12-31
-
铋基钙钛矿展现强非线性光学响应,推动全光器件发展
近日,燕山大学与南开大学联合研究团队在无铅钙钛矿非线性光学材料领域取得重要突破。相关成果以《空间自相位调制铋基钙钛矿的强非线性响应及其全光应用》为题,发表于国际知名期刊Laser&PhotonicsReviews(2025,19(8):2401929)。该研究不仅系统揭示了有机–无机杂化铋基钙钛矿在可见光波段的优异三阶非线性光学性能,还成功演示了其在全光开关与全光二极管等关键光子器件中的实际应用潜力。
2025-12-31
-
光学三大核心元件:平面镜、凸透镜与凹透镜的原理及应用探析
从日常梳妆的镜面反射到航天探测的精密成像,从视力矫正的光学器具到芯片制造的光刻技术,光学元件已深度融入人类生产生活与尖端科技领域。平面镜、凸透镜、凹透镜作为光学系统的三大核心基石,其基于光的反射与折射规律的工作机制,构建了现代光学技术的基础框架。本文将系统阐述三者的物理原理、设计规范、应用场景及发展趋势,展现基础光学元件的科学价值与技术魅力。
2025-12-31
-
TriAngle激光束准直:一看就懂的高精度光学校准方案
激光在工业加工(切割、焊接)、医疗设备(激光手术仪)、科研实验等场景中,都需要“走得直、聚得准”。如果激光束跑偏、发散,要么加工出来的产品不合格,要么医疗操作有风险,实验数据也会出错。
传统的激光校准靠人工慢慢调,又费时间又容易出错,环境稍微变一点(比如温度、振动)就不准了。而TriAngle是专门解决这个问题的设备,能让激光校准变得简单、快速又精准。2025-12-30
