全玻璃微型GHz重复率飞秒激光腔:光学制造的新突破
在现代光学领域,飞秒激光器因其超短脉冲和高峰值功率而在众多应用中扮演着关键角色。从微细加工到生物医学,飞秒激光技术不断推动科技的边界。最近,一项革命性的进展在《Optica》期刊上被报道,研究人员成功开发了一种全玻璃微型GHz重复率飞秒激光腔,这一成果不仅在技术上实现了重大突破,也为光学系统制造提供了全新的范例。
一、创新设计:全玻璃飞秒激光器
这项研究的核心在于一种全新的飞秒激光器设计,它几乎完全由玻璃构成,利用飞秒激光-物质相互作用进行组件对准,而非传统的机械方法。这种设计允许激光腔在保持小型化的同时,实现GHz级别的重复率,这对于光学频率梳的生成和精密测量等领域具有重要意义。
二、制造工艺:飞秒激光加工技术
文章详细介绍了激光腔的制造过程,这涉及到使用飞秒激光曝光和化学蚀刻相结合的工艺来制造玻璃基板。基板上预定义了组件的插槽和嵌入式弯曲元件,这些元件随后可以通过飞秒激光进行非接触式的精细调整,实现亚纳米和亚弧度角分辨率的超精确定位。这种方法不仅提高了制造精度,也大大增强了激光腔的可靠性和稳定性。
三、性能表现:高效且稳定
研究人员展示了这种全玻璃飞秒激光器在不同泵浦功率下的性能。在连续波模式下,激光腔展现了60mW的激光阈值和32%的斜率效率。而在锁模状态下,系统在296毫瓦的入射泵功率以上过渡到自启动锁模状态,输出功率以约25%的斜率效率上升。此外,激光器的光束质量接近衍射极限,适合在单模光纤内耦合,显示了其在实际应用中的潜力。
四、应用前景:广泛的科学和工业领域
这种新型飞秒激光器因其小型化、高效和稳定的性能,在3D微制造、手术应用、计量学和光谱学等领域具有广泛的应用前景。它的成功开发,不仅为飞秒激光技术的应用提供了新的可能性,也为光学系统的设计和制造开辟了新的道路。
全玻璃微型GHz重复率飞秒激光腔的研制成功,标志着光学制造技术的一个新里程碑。这种激光器的小型化、集成化特点,以及其在性能上的卓越表现,预示着未来光学系统将更加紧凑、高效和可靠。随着技术的进一步发展和优化,我们有理由相信,这种全玻璃飞秒激光器将在科学和工业领域发挥越来越重要的作用。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30