【光学资讯】国防科技大学在光悬浮系统领域取得重大突破
在精密测量技术的前沿,国防科技大学激光陀螺创新团队最近取得了一项引人注目的成就,成功开发了一种新型的片上光悬浮系统,用于精确测量悬浮微球的带电量。这项技术不仅提高了测量精度,还为光悬浮系统在多个领域的应用铺平了道路。
核心成果
该团队设计了集成电极的双光束光阱芯片,并提出了直流驱动法与交流驱动法两种测量微球带电量的方法。这些方法的成功实施,使得微球带电量的测量精度得到了显著提升。通过对带电量的精密测量,可以量化外部电场力对测量的影响,实现对噪声的有效抑制。
技术优势
光悬浮系统因其非接触、低损伤、易于小型化等特点,在生命科学、纳米科技等领域有着广泛的应用。国防科技大学的这项技术突破,利用光阱捕获并操控微球,通过检测微球的运动状态,实现了对极弱力、重力、加速度、微质量、电场等物理参量的精密测量。
应用前景
这项技术的应用前景广阔,不仅可以加速推进基于光悬浮系统的低频通信技术、加速度计和重力仪的工程化研制进程,还可应用于声子激光、暗物质探测等基础前沿研究。此外,利用该系统捕获已知带电量的微球,可实现对外界电场的精确测量,为低频天线小型化提供技术支撑。
后续工作展望
国防科技大学激光陀螺创新团队计划在未来进一步实现电荷量精准调控,降低由于电荷引起的测量噪声,提升系统测量灵敏度。同时,团队还致力于进一步实现位移测量系统的集成化,减小片上光悬浮系统的尺寸,推动该技术走出实验室,实现实用化。
团队背景
国防科技大学激光陀螺创新团队由中国工程院高伯龙院士创建,拥有50多年的激光陀螺研究历史,是我国激光陀螺技术研究的“国家队”。团队在光力学与精密测量领域取得了显著成果,并在多个国际期刊上发表了学术论文。
国防科技大学的这项技术突破,不仅展示了我国在光悬浮系统领域的强大研发实力,也为全球光学技术的发展贡献了中国智慧。随着后续工作的深入,我们期待这项技术能够在更多领域发挥重要作用,推动科技进步。
-
低密度等离子体棱镜压缩器取得突破,突破传统光学限制,赋能超高功率激光技术
激光技术的迅猛发展,持续推动着人类对极端物理现象的探索,而拍瓦级及更高功率的激光装置,更是解开高能物理、相对论光学等领域奥秘的关键工具。然而,传统激光脉冲压缩技术长期受限于光学元件的损伤阈值,成为制约激光功率提升的核心瓶颈。近日,美国密歇根大学、罗切斯特大学等机构的科研人员联合研发出基于低密度等离子体棱镜的新型脉冲压缩器,为突破这一限制带来革命性进展,相关成果发表于《HighPower Laser Scienceand Engineering》。
2025-08-18
-
从光斑到清晰成像,光学系统如何突破"模糊"极限?
当我们透过镜头观察世界时,那些清晰的图像背后,藏着光的衍射与数学模型的复杂博弈。为何遥远的恒星在望远镜中会变成光斑?光学系统如何传递图像的细节?从艾里斑到调制传递函数,这些关键概念正是解开"模糊"谜题的钥匙。
2025-08-18
-
粉末增材制造技术在掺铒石英光纤激光器中的应用研究
在光纤通信、激光加工及生物医疗等关键领域,高性能光纤激光器的需求持续攀升,而增益光纤作为其核心构成部件,其制造工艺直接决定器件的性能水平。传统制造方法虽能生产高质量增益光纤,但存在生产周期冗长、成本高昂及成分调控灵活性不足等显著局限。近期,PawelManiewski等人在《Optica》期刊发表的研究成果,提出了一种基于粉末增材制造的新型制备方案,为高性能增益光纤的研发开辟了全新路径。
2025-08-18
-
偏心仪在透镜及镜片加工中的应用解析
偏心仪在透镜及镜片加工领域中应用广泛,其核心作用在于通过精密检测与校准,确保光学元件的几何中心与光轴保持高度一致性,进而保障光学系统的成像质量与性能稳定性。具体应用如下:
2025-08-15