【光学资讯】国防科技大学在光悬浮系统领域取得重大突破
在精密测量技术的前沿,国防科技大学激光陀螺创新团队最近取得了一项引人注目的成就,成功开发了一种新型的片上光悬浮系统,用于精确测量悬浮微球的带电量。这项技术不仅提高了测量精度,还为光悬浮系统在多个领域的应用铺平了道路。
核心成果
该团队设计了集成电极的双光束光阱芯片,并提出了直流驱动法与交流驱动法两种测量微球带电量的方法。这些方法的成功实施,使得微球带电量的测量精度得到了显著提升。通过对带电量的精密测量,可以量化外部电场力对测量的影响,实现对噪声的有效抑制。
技术优势
光悬浮系统因其非接触、低损伤、易于小型化等特点,在生命科学、纳米科技等领域有着广泛的应用。国防科技大学的这项技术突破,利用光阱捕获并操控微球,通过检测微球的运动状态,实现了对极弱力、重力、加速度、微质量、电场等物理参量的精密测量。
应用前景
这项技术的应用前景广阔,不仅可以加速推进基于光悬浮系统的低频通信技术、加速度计和重力仪的工程化研制进程,还可应用于声子激光、暗物质探测等基础前沿研究。此外,利用该系统捕获已知带电量的微球,可实现对外界电场的精确测量,为低频天线小型化提供技术支撑。
后续工作展望
国防科技大学激光陀螺创新团队计划在未来进一步实现电荷量精准调控,降低由于电荷引起的测量噪声,提升系统测量灵敏度。同时,团队还致力于进一步实现位移测量系统的集成化,减小片上光悬浮系统的尺寸,推动该技术走出实验室,实现实用化。
团队背景
国防科技大学激光陀螺创新团队由中国工程院高伯龙院士创建,拥有50多年的激光陀螺研究历史,是我国激光陀螺技术研究的“国家队”。团队在光力学与精密测量领域取得了显著成果,并在多个国际期刊上发表了学术论文。
国防科技大学的这项技术突破,不仅展示了我国在光悬浮系统领域的强大研发实力,也为全球光学技术的发展贡献了中国智慧。随着后续工作的深入,我们期待这项技术能够在更多领域发挥重要作用,推动科技进步。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30