中红外光纤泵浦合束器在轻量化先进制造领域获得新突破
在激光医疗技术领域,精准、微创、低能量治疗技术的发展一直是研究的热点。最近中红外光纤泵浦合束器迎来创新研究,这项研究不仅推动了激光医疗技术的进步,也为轻量化先进制造领域带来了新的突破。

泵浦合束器的创新设计
该泵浦合束器的设计基于对石英光纤和掺铒ZBLAN(ZrF4-BaF2-LaF3-AlF3-NaF)光纤进行侧面抛光的技术。这种设计使得泵浦光能够有效地从石英光纤传输到氟化物光纤,为激光医疗技术提供了更为高效的能源传输方案。
表面质量对性能的影响
研究指出,表面质量是影响泵浦合束效率的关键因素。通过精确控制抛光过程,石英光纤和氟化物光纤的抛光表面宽度分别优化至111μm和352μm,以达到最佳耦合效率。显微镜图像清晰展示了抛光后光纤的表面状态,为进一步的优化提供了直观的参考。
泵浦合束器的性能测试
为了验证耦合效率,研究团队引入了980nm波长、最大功率12W的多模激光二极管发出的光,并在三个光纤输出端监测功率。测试结果表明,泵浦合束器在不同发射功率下的瞬时耦合效率几乎保持恒定,达到了75%,显示出合束器在稳定运行的激光功率范围内具有良好的性能一致性。
激光腔中的工作表现
进一步的测试中,研究人员将泵浦合束器应用于激光腔中,观察其工作表现。当泵浦功率约为2.9W时,激光输出波长位于2.73μm,最大功率达到100mW,对应效率为3.6%。随着泵浦功率的增加,激光输出峰值移至2.78μm,功率升至870mW,效率提升至15.5%。
这项研究成功设计了一种新型中红外光纤泵浦合束器,实现了接近80%的耦合效率,总损耗低于0.65dB。这种合束器不仅在2.8μm波长下展现了优异性能,而且其连续波操作的平均输出功率达到了870mW,效率为15.5%。实验结果表明,该泵浦合束器能够适配多种腔体设计,为全光纤激光器的实现提供了可靠的技术支持。
此外,这种合束器依赖倏逝场耦合原理工作,不受光谱范围的限制,且侧面抛光光纤技术不仅适用于特定泵浦波长,还可用于多波长组合。尽管当前设计在多泵浦端口集成方面存在局限,但它成功解决了石英与氟化物光纤兼容性的难题,为开发低损耗、可调谐的氟化物基光学耦合器奠定了重要基础。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
