思克莱德大学开发可持续量子点回收技术
在追求可持续发展和环境保护的今天,思克莱德大学的研究人员开发了一种实用且廉价的方法来回收用于制造微观超粒子(SP)激光器的胶体量子点(CQD)。这项技术不仅提高了经济和环境的可持续性,还为回收各种纳米颗粒提供了可能。
一、回收CQD的重要性
CQD是SP激光器的关键组成部分,它们能够有效地吸收、发射和放大光。传统的SP激光器制造方法涉及将CQD悬浮在油包水乳液中并使其稳定,形成微泡,CQD在微泡中聚集。然而,并非所有CQD批次都能成功制造SP激光器,且随着时间的推移,即使是成功的批次也会退化。为了防止有缺陷的SP批次中CQD的损失,思克莱德大学的研究人员提出了一种回收方法。
二、回收过程
研究人员首先将激光器悬浮在油相中,施加适度的热量并使激光器受到超声波的机械应力来拆卸SP激光器。随后,他们将油混合物与水混合,分离含有CQD的油和含有杂质的水。通过过滤CQD并在表面添加一层涂层,然后测试它们是否能有效发出荧光。通过测试的CQD被重新组装成聚合体,用于制造SP激光器。
三、环境与经济效益
为了最大限度地提高CQD的纯度,并尽量减少溶剂的使用和纳米颗粒的损失,研究人员使用了一个封闭的分离漏斗系统来分离液体并过滤CQD。这种方法无毒,不需要极端条件或专门的设备,创造了一种可持续的回收方法。
四、回收效果
使用这种技术,研究人员证明了CQD回收率达到85%。回收的CQD保留了83±16%的光致发光量子产率,而初始批次的产率为86±9%。使用回收的纳米粒子通过自组装合成SP,可以重新创建激光SP,其阈值与其前身相当。
五、应用前景
SP激光器可以在纳米级控制光,实现对波长、强度和其他特性的精确操纵。这些微观激光器可用于光催化、生物和环境传感、集成光子学和医学等领域。回收技术可以增强SP激光器的制造,并为各种胶体纳米粒子种类的整体回收工作做出贡献。
思克莱德大学的这项研究不仅为量子点的回收提供了一种新方法,还为可持续纳米工程的进步做出了贡献。这种方法有望延长超粒子的生命周期,重新用于各种应用,如医疗生物传感器,代表着可持续纳米工程的重大进步。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30