soTILT3D显微镜平台:革新纳米级细胞成像技术
在生物医学研究的前沿,对细胞内部结构的精确观察是理解生命过程的关键。最近,莱斯大学Anna-KarinGustavsson教授及其团队开发了一种创新的显微镜平台——soTILT3D(单目标倾斜光片3D),在超分辨率显微镜领域取得了突破性进展,极大地提高了细胞结构3D可视化的精度。
一、技术特点:
1.单目标倾斜光片技术:soTILT3D通过单目标倾斜光片技术有选择性地照亮样品的薄片,显著减少了背景荧光干扰,尤其适合成像厚样本,如哺乳动物细胞。
2.3D点扩展函数(PSF):平台采用3DPSF设计,实现了单分子的3D成像,提高了成像的精度和速度。
3.微流控系统:集成的定制微流体系统和金属化微镜,能够精确控制细胞外环境,并允许快速溶液交换,适合无颜色偏移的连续多目标成像。
4.深度学习和实时漂移校正:soTILT3D利用深度学习分析高浓度荧光团,并采用实时漂移校正算法,以实现长时间稳定的高精度成像。
二、技术优势:
1.高成像速度和信噪比:与传统方法相比,soTILT3D的倾斜光片技术将细胞成像的信噪比提高多达六倍,增强了对比度和纳米级定位的精确性。
2.全细胞多目标成像:平台支持全细胞、3D、多目标成像,能够捕捉整个细胞内多种蛋白质的分布,并测量它们之间的纳米级距离。
三、科研意义:
soTILT3D平台的问世,不仅提高了成像速度和精度,还为研究细胞内多种蛋白质的空间分布及其相互关系提供了新的工具。通过对关键蛋白如laminB1和laminA/C的精确可视化,科研人员可以更深入地理解这些分子在细胞功能调控中的作用。
这项研究成果已发表在《自然通讯》杂志上,标志着其在学术界的重要地位和创新性。soTILT3D平台的推广应用,预计将为细胞生物学、疾病机制研究、药物开发等领域带来革命性的变化,开启纳米尺度细胞成像技术的新篇章。随着技术的不断进步,我们期待未来会有更多创新的纳米级细胞成像技术出现,进一步推动生物医学领域的发展。
-
低密度等离子体棱镜压缩器取得突破,突破传统光学限制,赋能超高功率激光技术
激光技术的迅猛发展,持续推动着人类对极端物理现象的探索,而拍瓦级及更高功率的激光装置,更是解开高能物理、相对论光学等领域奥秘的关键工具。然而,传统激光脉冲压缩技术长期受限于光学元件的损伤阈值,成为制约激光功率提升的核心瓶颈。近日,美国密歇根大学、罗切斯特大学等机构的科研人员联合研发出基于低密度等离子体棱镜的新型脉冲压缩器,为突破这一限制带来革命性进展,相关成果发表于《HighPower Laser Scienceand Engineering》。
2025-08-18
-
从光斑到清晰成像,光学系统如何突破"模糊"极限?
当我们透过镜头观察世界时,那些清晰的图像背后,藏着光的衍射与数学模型的复杂博弈。为何遥远的恒星在望远镜中会变成光斑?光学系统如何传递图像的细节?从艾里斑到调制传递函数,这些关键概念正是解开"模糊"谜题的钥匙。
2025-08-18
-
粉末增材制造技术在掺铒石英光纤激光器中的应用研究
在光纤通信、激光加工及生物医疗等关键领域,高性能光纤激光器的需求持续攀升,而增益光纤作为其核心构成部件,其制造工艺直接决定器件的性能水平。传统制造方法虽能生产高质量增益光纤,但存在生产周期冗长、成本高昂及成分调控灵活性不足等显著局限。近期,PawelManiewski等人在《Optica》期刊发表的研究成果,提出了一种基于粉末增材制造的新型制备方案,为高性能增益光纤的研发开辟了全新路径。
2025-08-18
-
偏心仪在透镜及镜片加工中的应用解析
偏心仪在透镜及镜片加工领域中应用广泛,其核心作用在于通过精密检测与校准,确保光学元件的几何中心与光轴保持高度一致性,进而保障光学系统的成像质量与性能稳定性。具体应用如下:
2025-08-15