soTILT3D显微镜平台:革新纳米级细胞成像技术
在生物医学研究的前沿,对细胞内部结构的精确观察是理解生命过程的关键。最近,莱斯大学Anna-KarinGustavsson教授及其团队开发了一种创新的显微镜平台——soTILT3D(单目标倾斜光片3D),在超分辨率显微镜领域取得了突破性进展,极大地提高了细胞结构3D可视化的精度。
一、技术特点:
1.单目标倾斜光片技术:soTILT3D通过单目标倾斜光片技术有选择性地照亮样品的薄片,显著减少了背景荧光干扰,尤其适合成像厚样本,如哺乳动物细胞。
2.3D点扩展函数(PSF):平台采用3DPSF设计,实现了单分子的3D成像,提高了成像的精度和速度。
3.微流控系统:集成的定制微流体系统和金属化微镜,能够精确控制细胞外环境,并允许快速溶液交换,适合无颜色偏移的连续多目标成像。
4.深度学习和实时漂移校正:soTILT3D利用深度学习分析高浓度荧光团,并采用实时漂移校正算法,以实现长时间稳定的高精度成像。
二、技术优势:
1.高成像速度和信噪比:与传统方法相比,soTILT3D的倾斜光片技术将细胞成像的信噪比提高多达六倍,增强了对比度和纳米级定位的精确性。
2.全细胞多目标成像:平台支持全细胞、3D、多目标成像,能够捕捉整个细胞内多种蛋白质的分布,并测量它们之间的纳米级距离。
三、科研意义:
soTILT3D平台的问世,不仅提高了成像速度和精度,还为研究细胞内多种蛋白质的空间分布及其相互关系提供了新的工具。通过对关键蛋白如laminB1和laminA/C的精确可视化,科研人员可以更深入地理解这些分子在细胞功能调控中的作用。
这项研究成果已发表在《自然通讯》杂志上,标志着其在学术界的重要地位和创新性。soTILT3D平台的推广应用,预计将为细胞生物学、疾病机制研究、药物开发等领域带来革命性的变化,开启纳米尺度细胞成像技术的新篇章。随着技术的不断进步,我们期待未来会有更多创新的纳米级细胞成像技术出现,进一步推动生物医学领域的发展。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30