纤维内窥镜成像技术的突破:波长扫描全息技术与神经网络的结合
在生物医学成像领域,光纤内窥镜因其微创特性而备受青睐,尤其在软性内窥镜检查中发挥着重要作用。最近,一项创新技术的出现为光纤内窥镜成像带来了革命性的进步。这项技术通过结合波长扫描全息技术和多层卷积神经网络,显著提升了成像质量和分辨率。
这项技术的核心在于使用单模光纤进行物体在不同波长下的照明,并通过多芯光纤收集一定距离外的衍射光。通过U-Net多层卷积神经网络,研究人员能够从近端记录的强度图中恢复多芯光纤远端的衍射图,进而利用平面摄影算法重建相位对象。这一过程不仅提高了物体重建的质量,而且随着所用波长的增加,重建效果得到了显著提升。
研究方法与材料
研究中采用了一个迭代叠层系统,该系统使用两根光纤:一根用于照明,一根用于收集衍射波前。实验装置包括可调谐激光器、镜头、单模光纤、相位空间光调制器、分束器、相机等,共同实现了波长扫描层析成像技术(ws-PIE)。
实验环境搭建
实验中,来自可调谐激光器的光通过镜头耦合并通过单模光纤传输,照亮相位空间光调制器的有效区域。反射光通过分束器分束后,一部分成像到相机(CCD1),另一部分通过多芯光纤并使用镜头对相机(CCD2)进行成像。半波片和线性偏振器位于空间光调制器之前和之后,以提高调制效率并降低系统噪声。
结果展示
实验结果显示,通过改变波长数和波长范围,物体的重建效果得到了显著提升,均方误差(MSE)也随之减小。图像重建展示了不同波长配置下的灰度和二进制SLM模式,证明了使用多个波长可以更详细地观察波长,从而显著提高效果。
这项研究采用了神经网络增强的波长扫描全息技术,为光纤内窥镜成像提供了一种新的解决方案。与传统的端到端神经网络相比,这种两步混合系统显示出了更高的有效性和实用性。这种替代和简化的胸腔镜内窥镜设置通过神经网络和波长扫描提供了显著的改进,为医学成像领域带来了新的希望。
随着技术的不断进步,我们可以期待这种结合了波长扫描全息技术和神经网络的纤维内窥镜成像技术在未来的医疗诊断和治疗中发挥更大的作用。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30