【光学前沿】为什么说光子计算是加速人工智能的新型硬件系统?
在人工智能的快速发展中,对计算速度和功耗的要求日益严格。光子计算作为一种新兴技术,以其独特的优势在这一领域崭露头角。本文将探讨光子计算如何利用光子作为信息载体,为传统电子计算提供部分替代方案,并重点介绍一项突破性研究,该研究通过并行边缘提取策略显著提高了光子卷积神经网络的计算速度。
一、光子计算的潜力
光子计算利用光子在信息处理中的超低功耗特性,理论上能提供高达几太赫兹的更高带宽。这种技术的优势在于其高速和低能耗的特性,尽管实际应用受到大规模集成和硅光子学工业的限制。然而,随着技术的进步,这些挑战正在被逐步克服。
二、并行边缘提取策略
最近,Ouyang等人的研究表明,通过在3×3十字微环谐振器阵列上实现光子复用架构,可以依靠硅光子学实现光子卷积神经网络图像的并行边缘提取。这项技术能够在不增加硬件比例和功耗的情况下,同时处理四个特征映射的并行边缘提取,实现4倍的卷积计算加速。
三、性能指标
该微环谐振器阵列芯片的最大计算能力达到了0.742TOPS,能量成本仅为48.6mW,卷积精度高达95.1%。通过使用并行边缘提取算子代替通用算子,CIFAR-10数据集的图像识别精度提高了6.2%,最高可达78.7%。
四、光子卷积神经网络的性能
研究人员进一步分析了光子卷积神经网络在硅光子芯片上的性能。这包括训练期间的准确性和损失,以及CIFAR-10分类的混淆矩阵。这些分析结果表明,光子卷积神经网络在图像识别任务中表现出色。
这项研究不仅展示了一种利用微环谐振器阵列作为主处理器的硅光子计算芯片,而且通过并行边缘提取策略显著加速了光子卷积神经网络。这项工作为在硬件规模有限的情况下提高光子芯片的计算速度奠定了重要的基础,为人工智能领域提供了一种新的硬件加速方案。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30