布伦瑞克工业大学在微型LED技术领域取得进展,助力未来人工智能发展
在人工智能领域,能源效率和计算能力的提升一直是研究的热点。德国布伦瑞克工业大学(TUBraunschweig)的氮化物技术中心(NTC)在此领域取得了突破性进展,他们利用微型LED技术构建了模拟生物神经网络的神经形态计算机,旨在打造更节能、更强大的AI硬件。

微型LED技术:小型化与能源效率的结合
布伦瑞克工业大学的研究团队与奥斯特法利亚应用科学大学和amsOSRAM的合作者一起,采用微型LED技术,探索了一种全新的计算机构建方法。这种技术的核心优势在于小型化、可扩展性和能源效率,这对于开发下一代人工智能应用硬件至关重要。
光学神经形态计算的创新
AndreasWaag教授,来自布伦瑞克工业大学半导体技术研究所,解释说:“我们的光学神经形态计算通过使用电子电路或光子元件模拟了生物神经网络的功能。”这种方法不仅能够模拟人类大脑中的神经网络,还能避免传统数字计算机技术在大规模并行信息处理中的高能耗弱点。
氮化镓(GaN):microLED技术的首选半导体
氮化镓(GaN)是microLED技术的首选半导体材料,因其高功率密度和效率而在电力电子领域越来越受到重视。GaN不仅具有比传统硅半导体更高的功率密度和效率,还具有光学活性,是蓝色LED的基本构造块。布伦瑞克工业大学的NTC正在推动氮化物半导体技术的发展,将其作为微电子的第二大支柱。
神经形态计算机的潜力与应用
通过将GaN组件与传统硅微电子技术相结合,研究人员开辟了全新的应用领域,例如具有数十万个microLED的高度集成阵列。这些阵列不仅在QuantumFrontiers卓越集群和下萨克森州量子谷中得到应用,还展示了基于GaN的microLED技术在降低AI系统功耗方面的潜力,有望将功耗降低10,000倍。
研究进展与成果
NTC研究小组已经开发出一种具有1000个神经元的宏观光学微型LED演示器,该演示器已经通过了标准的AI模式识别测试,能够识别以混乱方式书写的从0到9的数字,其中一些数字甚至连人类都难以辨认。这一成果不仅展示了基于该技术的“人工大脑”的潜力,还预示着未来计算机技术的新方向。
这项研究发表在《物理光子学杂志》上,标志着光学神经形态计算领域的一个重要里程碑。通过这项研究,布伦瑞克工业大学展示了微型LED技术在人工智能领域的广阔应用前景,为未来计算机技术的发展提供了新的方向,同时也为实现更节能、更强大的人工智能系统提供了可能。
-
多层微纳超表面结构:光束角度控制的创新设计与应用
光学超表面作为亚波长尺度的功能性光学结构,在光场调控领域展现出巨大应用潜力,其对光的振幅、相位及偏振的灵活调控能力,为成像、传感、光学计算等关键技术的发展提供了核心支撑。角度依赖的散射特性是实现空间频率滤波、光束转向等功能的核心基础,但单层超表面受限于傅里叶变换的物理约束,难以在维持高效率的同时实现复杂角度响应;现有多层超表面设计则面临层间耦合复杂、参数优化困难等挑战。本文系统阐述了一种基于模块化设计策略的多层微纳超表面结构,通过物理级联非局域高通滤波器与局域低通滤波器,实现了对光束角度的精准、灵活控制。该设计经全波电磁模拟验证,展现出优异的带通滤波性能、高度的结构鲁棒性及广泛的应用适配性,为高性能光学器件的研发提供了全新技术路径,对光学模拟计算、全息显示等领域的技术升级具有重要意义。
2026-01-15
-
硅光光模块与传统光模块的技术差异及行业影响
光通信作为信息传输的核心载体,其性能升级与成本优化成为行业竞争的关键。光模块作为光通信系统中实现光电信号转换的核心器件,随着数据中心、5G/6G通信等场景对带宽、功耗、集成度要求的不断提升,技术路线正经历从传统III-V族化合物半导体方案向硅基集成方案的迭代。硅光光模块凭借硅基材料的天然优势与CMOS工艺的成熟性,与传统光模块形成了显著的技术差异,这种差异不仅体现在核心器件层面,更深刻影响着光通信行业的发展格局。本文将从核心材料、制造工艺、性能参数、应用场景及发展趋势五个维度,系统剖析两者的差异及背后的技术逻辑。
2026-01-14
-
光纤激光器光致暗化(PD)效应如何实现机制、影响及抑制技术高效管控?
随着光纤激光器在工业加工、航空航天、激光通信等领域的广泛应用,其输出功率与运行稳定性的要求持续提升。光致暗化效应作为光纤激光器长期工作过程中普遍存在的性能衰减现象,直接导致输出功率下降、激光性能波动,严重影响设备的使用寿命与运行可靠性。其中,掺镱光纤作为1μm波段高功率光纤激光器的核心增益介质,其PD效应的研究与管控尤为重要。本文基于实际工程应用场景,对PD效应的相关关键问题展开深入探讨。
2026-01-14
-
激光有机玻璃的特性、加工原理及应用研究
激光有机玻璃作为聚甲基丙烯酸甲酯(PMMA)材料的专用改性品类,凭借其优异的激光加工适配性、光学性能及物理稳定性,已成为广告标识、工业制造、装饰艺术等领域的核心材料之一。本文从激光有机玻璃的基本定义出发,系统分析其核心特性与分类,深入探讨激光加工的核心原理及工艺适配性,厘清其与普通有机玻璃的本质差异,全面梳理其应用领域,并提出针对性的选购与使用规范,为相关行业的材料选型与工艺优化提供理论参考。
2026-01-14
