【光学资讯】科罗拉多州立大学开发LED光催化剂系统,有望分解PFAS中的碳氟键
全氟和多氟烷基物质(PFAS),被称为“永久化学物质”,因其耐久性在全球范围内被广泛使用。然而,这些化学物质难以分解,对环境和人类健康构成严重威胁。科罗拉多州立大学(CSU)的研究人员开发了一种基于LED光的光催化剂系统,有望分解PFAS中难以分解的碳氟(CF)键,为解决这一全球性问题提供了新途径。
PFAS的危害
PFAS因其分解速度极慢,已成为自然环境的一部分。美国环境保护署(EPA)指出,接触水、空气和土壤中的PFAS会导致人类癌症、生殖问题和其他健康问题。这些化学物质在日常生活的材料中无处不在,包括衣服、食物、水和药品,对环境产生负面影响。
光催化剂系统的创新
CSU的研究人员开发了一种光氧化还原催化剂系统,该系统能够还原CF键以生成以碳为中心的自由基,然后可以将其拦截以进行加氢脱氟和交叉偶联反应。光氧化还原催化剂是一种可以吸收光并在辐射下产生电子转移反应的材料,利用比传统能源更可持续的光能来驱动化学反应。
系统的优势
CSU开发的基于LED的光催化系统可在室温下使用,环境温度允许在相对温和的条件下发生化学反应,从而可以更快、更省步骤地生产化学品。这与传统化学制造工艺相比,后者通常需要高温才能达到类似的效果。
可持续性和效率
GarretMiyake教授表示:“我们的方法更具可持续性和效率,除了PFAS的明显用途外,还可用于解决塑料中的顽固化合物等问题。”Miyake教授是CSU可持续光氧化还原催化中心(SuPRCat)主任,该中心由美国国家科学基金会资助,旨在开发利用光能并使用现成材料作为催化剂的化学制造工艺。
研究进展与挑战
SuPRCat正在探索其他使化学制造业更加生态化的方法。研究员XinLiu表示:“我们在SuPRCat中使用LED灯的方法为以更可持续和更高效的方式实现这些反应提供了大量可能性。”研究人员面临的下一个挑战是准备光氧化还原催化剂系统以广泛应用于该领域。MihaiPopescu研究员说:“我们需要让这项技术更加实用,以便它可以用于水或土壤——发现PFAS的地方。”
这项研究发表在《自然》杂志上,标志着在处理PFAS等永久性化学物质方面迈出了重要一步。研究人员希望他们的工作将有助于在工业规模上更高效、更可持续地制造和管理化学材料,为全球环境和人类健康带来积极影响。
-
MTF测试在医疗成像中的作用
在医疗成像领域,调制传递函数(MTF)测试是一种重要的工具,用于评估和提高成像设备的诊断准确性。以下是MTF测试在医疗成像中的具体应用及其对诊断准确性的帮助:
2025-01-15
-
水下光无线通信取得新突破!能否照亮深海通信的未来?
在深邃的海洋中,通信技术一直是人类探索和利用海洋资源的关键。近年来,水下光无线通信技术以其高带宽、低延迟等优势,逐渐成为水下通信领域的研究热点。本文将为您详细介绍水下光无线通信的最新进展,带您领略这一前沿技术的魅力。
2025-01-15
-
外国团队在CMOS试验原型生产线上实现电驱动砷化镓纳米脊激光二极管的单片制造
硅光子学是一项快速发展的技术,有望彻底改变通信、计算和感知世界的方式。然而,缺乏高度可扩展的原生互补金属氧化物半导体(CMOS)集成光源一直是其广泛应用的主要障碍。尽管在硅上混合和异质集成III-V族光源方面已取得显著进展,但通过直接外延生长III-V族材料实现单片集成,仍然是成本效益最高的片上光源解决方案。
2025-01-14
-
深度学习计算成像:数据驱动与物理驱动的较量与融合
相位恢复是计算成像中的一个经典逆问题,其目标是从强度测量中恢复光波相位,进而定量分析样品的生物物理特性。这一技术在生物医学成像、自适应光学、相干衍射成像和精密测量等多个领域都有着广泛的应用。近年来,深度学习方法为相位恢复带来了新的活力,数据驱动和物理驱动成为实现这一目标的两种主要策略。
2025-01-14