【光学资讯】科罗拉多州立大学开发LED光催化剂系统,有望分解PFAS中的碳氟键
全氟和多氟烷基物质(PFAS),被称为“永久化学物质”,因其耐久性在全球范围内被广泛使用。然而,这些化学物质难以分解,对环境和人类健康构成严重威胁。科罗拉多州立大学(CSU)的研究人员开发了一种基于LED光的光催化剂系统,有望分解PFAS中难以分解的碳氟(CF)键,为解决这一全球性问题提供了新途径。

PFAS的危害
PFAS因其分解速度极慢,已成为自然环境的一部分。美国环境保护署(EPA)指出,接触水、空气和土壤中的PFAS会导致人类癌症、生殖问题和其他健康问题。这些化学物质在日常生活的材料中无处不在,包括衣服、食物、水和药品,对环境产生负面影响。
光催化剂系统的创新
CSU的研究人员开发了一种光氧化还原催化剂系统,该系统能够还原CF键以生成以碳为中心的自由基,然后可以将其拦截以进行加氢脱氟和交叉偶联反应。光氧化还原催化剂是一种可以吸收光并在辐射下产生电子转移反应的材料,利用比传统能源更可持续的光能来驱动化学反应。
系统的优势
CSU开发的基于LED的光催化系统可在室温下使用,环境温度允许在相对温和的条件下发生化学反应,从而可以更快、更省步骤地生产化学品。这与传统化学制造工艺相比,后者通常需要高温才能达到类似的效果。
可持续性和效率
GarretMiyake教授表示:“我们的方法更具可持续性和效率,除了PFAS的明显用途外,还可用于解决塑料中的顽固化合物等问题。”Miyake教授是CSU可持续光氧化还原催化中心(SuPRCat)主任,该中心由美国国家科学基金会资助,旨在开发利用光能并使用现成材料作为催化剂的化学制造工艺。
研究进展与挑战
SuPRCat正在探索其他使化学制造业更加生态化的方法。研究员XinLiu表示:“我们在SuPRCat中使用LED灯的方法为以更可持续和更高效的方式实现这些反应提供了大量可能性。”研究人员面临的下一个挑战是准备光氧化还原催化剂系统以广泛应用于该领域。MihaiPopescu研究员说:“我们需要让这项技术更加实用,以便它可以用于水或土壤——发现PFAS的地方。”
这项研究发表在《自然》杂志上,标志着在处理PFAS等永久性化学物质方面迈出了重要一步。研究人员希望他们的工作将有助于在工业规模上更高效、更可持续地制造和管理化学材料,为全球环境和人类健康带来积极影响。
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
