【光学资讯】科罗拉多州立大学开发LED光催化剂系统,有望分解PFAS中的碳氟键
全氟和多氟烷基物质(PFAS),被称为“永久化学物质”,因其耐久性在全球范围内被广泛使用。然而,这些化学物质难以分解,对环境和人类健康构成严重威胁。科罗拉多州立大学(CSU)的研究人员开发了一种基于LED光的光催化剂系统,有望分解PFAS中难以分解的碳氟(CF)键,为解决这一全球性问题提供了新途径。
PFAS的危害
PFAS因其分解速度极慢,已成为自然环境的一部分。美国环境保护署(EPA)指出,接触水、空气和土壤中的PFAS会导致人类癌症、生殖问题和其他健康问题。这些化学物质在日常生活的材料中无处不在,包括衣服、食物、水和药品,对环境产生负面影响。
光催化剂系统的创新
CSU的研究人员开发了一种光氧化还原催化剂系统,该系统能够还原CF键以生成以碳为中心的自由基,然后可以将其拦截以进行加氢脱氟和交叉偶联反应。光氧化还原催化剂是一种可以吸收光并在辐射下产生电子转移反应的材料,利用比传统能源更可持续的光能来驱动化学反应。
系统的优势
CSU开发的基于LED的光催化系统可在室温下使用,环境温度允许在相对温和的条件下发生化学反应,从而可以更快、更省步骤地生产化学品。这与传统化学制造工艺相比,后者通常需要高温才能达到类似的效果。
可持续性和效率
GarretMiyake教授表示:“我们的方法更具可持续性和效率,除了PFAS的明显用途外,还可用于解决塑料中的顽固化合物等问题。”Miyake教授是CSU可持续光氧化还原催化中心(SuPRCat)主任,该中心由美国国家科学基金会资助,旨在开发利用光能并使用现成材料作为催化剂的化学制造工艺。
研究进展与挑战
SuPRCat正在探索其他使化学制造业更加生态化的方法。研究员XinLiu表示:“我们在SuPRCat中使用LED灯的方法为以更可持续和更高效的方式实现这些反应提供了大量可能性。”研究人员面临的下一个挑战是准备光氧化还原催化剂系统以广泛应用于该领域。MihaiPopescu研究员说:“我们需要让这项技术更加实用,以便它可以用于水或土壤——发现PFAS的地方。”
这项研究发表在《自然》杂志上,标志着在处理PFAS等永久性化学物质方面迈出了重要一步。研究人员希望他们的工作将有助于在工业规模上更高效、更可持续地制造和管理化学材料,为全球环境和人类健康带来积极影响。
-
安防镜头MTF测试如何保障监控画质?ImageMaster系列筑牢安防视觉防线
安防监控是社会安全体系的“眼睛”,从城市交通卡口的车牌识别、园区周界的入侵监测,到夜间红外监控的场景还原,安防镜头的成像质量直接决定了监控数据的有效性——模糊的画面会导致车牌识别失败、人脸特征不清,甚至遗漏关键安全隐患。而MTF(光学传递函数)测试作为衡量镜头分辨率、对比度及综合光学性能的核心标准,专业的“安防镜头MTF测试仪”已成为安防镜头研发、生产企业的质量刚需。德国ImageMaster系列MTF测试仪,凭借全场景适配、高精度检测的优势,为安防镜头质量把控提供了国际一流的测试解决方案。
2025-09-12
-
基于硅通孔(TSV)的硅片减薄技术全景解析——支撑三维集成(3DIC)发展的关键工艺
三维集成(3DIC)技术凭借“垂直堆叠”的创新架构,已成为突破摩尔定律技术瓶颈的核心路径。硅通孔(TSV)作为3DIC实现芯片间垂直互联的核心载体,却长期受限于传统厚硅片(700800μm)的深宽比制约——不仅难以制备直径520μm的微小TSV结构,导致芯片面积占比居高不下,更使得多层堆叠后的芯片总厚度常突破毫米级,与智能手机、可穿戴设备等终端产品对芯片“厚度<1mm”的严苛要求存在显著冲突。
2025-09-12
-
电子光学核心技术与演进:理想成像标准、静电/磁透镜原理、像差校正及微观观测应用
微观世界探索的进程中,显微镜始终是核心技术支撑。从光学显微镜实现细胞结构的可视化,到电子显微镜突破原子尺度观测的极限,观测精度的每一次跃升,均以“透镜”技术的革新为核心驱动力。电子光学作为衔接电子运动规律与微观成像的关键学科,既继承了可见光光学的核心理论框架,又基于电子的粒子性与带电特性,构建了独特的聚焦调控与像差校正体系。从理论层面的“理想成像”标准确立,到工程实践中像差难题的逐步攻克,电子光学的发展历程,本质上是对微观观测“理想目标与现实约束”的持续平衡与突破。
2025-09-12
-
遗传算法调控光学流氓波:华东师范大学团队开辟复杂系统控制新路径
近日,华东师范大学曾和平教授团队在国际权威期刊《Laser&PhotonicsReviews》发表的研究成果,为这一技术难题提供了突破性解决方案。该团队创新性地将遗传算法与电子偏振控制技术相结合,首次实现了对超快光纤激光器中光学流氓波的精准调控——不仅可按需生成普通光学流氓波,还成功合成出强度较有效强度阈值高32.8倍的“超流氓波”,同时揭示了其背后全新的物理生成机制,为复杂系统极端事件的控制研究提供了关键参考。
2025-09-12