【光学资讯】科罗拉多州立大学开发LED光催化剂系统,有望分解PFAS中的碳氟键
全氟和多氟烷基物质(PFAS),被称为“永久化学物质”,因其耐久性在全球范围内被广泛使用。然而,这些化学物质难以分解,对环境和人类健康构成严重威胁。科罗拉多州立大学(CSU)的研究人员开发了一种基于LED光的光催化剂系统,有望分解PFAS中难以分解的碳氟(CF)键,为解决这一全球性问题提供了新途径。
PFAS的危害
PFAS因其分解速度极慢,已成为自然环境的一部分。美国环境保护署(EPA)指出,接触水、空气和土壤中的PFAS会导致人类癌症、生殖问题和其他健康问题。这些化学物质在日常生活的材料中无处不在,包括衣服、食物、水和药品,对环境产生负面影响。
光催化剂系统的创新
CSU的研究人员开发了一种光氧化还原催化剂系统,该系统能够还原CF键以生成以碳为中心的自由基,然后可以将其拦截以进行加氢脱氟和交叉偶联反应。光氧化还原催化剂是一种可以吸收光并在辐射下产生电子转移反应的材料,利用比传统能源更可持续的光能来驱动化学反应。
系统的优势
CSU开发的基于LED的光催化系统可在室温下使用,环境温度允许在相对温和的条件下发生化学反应,从而可以更快、更省步骤地生产化学品。这与传统化学制造工艺相比,后者通常需要高温才能达到类似的效果。
可持续性和效率
GarretMiyake教授表示:“我们的方法更具可持续性和效率,除了PFAS的明显用途外,还可用于解决塑料中的顽固化合物等问题。”Miyake教授是CSU可持续光氧化还原催化中心(SuPRCat)主任,该中心由美国国家科学基金会资助,旨在开发利用光能并使用现成材料作为催化剂的化学制造工艺。
研究进展与挑战
SuPRCat正在探索其他使化学制造业更加生态化的方法。研究员XinLiu表示:“我们在SuPRCat中使用LED灯的方法为以更可持续和更高效的方式实现这些反应提供了大量可能性。”研究人员面临的下一个挑战是准备光氧化还原催化剂系统以广泛应用于该领域。MihaiPopescu研究员说:“我们需要让这项技术更加实用,以便它可以用于水或土壤——发现PFAS的地方。”
这项研究发表在《自然》杂志上,标志着在处理PFAS等永久性化学物质方面迈出了重要一步。研究人员希望他们的工作将有助于在工业规模上更高效、更可持续地制造和管理化学材料,为全球环境和人类健康带来积极影响。
-
从缺陷机制到优化路径做GaN基半导体激光器的可靠性提升研究
在光电子器件领域,GaN基半导体激光器凭借其在显示、通信等领域的广泛应用,其可靠性问题一直是业界研究的核心议题。器件的长期稳定运行不仅与外延生长质量密切相关,芯片工艺的各个环节亦可能成为制约可靠性的关键因素。深入探究其退化机制,对于提升器件使用寿命具有重要的理论与实践意义。
2025-07-09
-
暨南大学研发新型光纤传感器,实现高精度原位表面浊度监测
在水产养殖水质管控、环境污染物检测、电池老化评估及食品加工等领域,液体中悬浮固体颗粒的含量(即浊度)是反映流体质量与过程控制的关键指标。传统浊度检测技术如声学法、光学遥感法、荧光法等虽在工业中应用广泛,但受限于检测环境,难以在偏远区域或复杂场景中稳定运行,且易受温度、气压等外界因素干扰。近日,暨南大学郭团教授团队提出的基于倾斜光纤布拉格光栅(TFBG)的原位表面浊度传感器,为解决该难题提供了创新性方案,相关成果发表于《OpticsLetters》期刊。
2025-07-09
-
半导体激光器热沉材料的散热难题突破与技术进展
在半导体激光器的性能体系中,散热能力作为核心支撑要素,直接决定器件的使用寿命与运行效能。相关数据表明,电子器件工作温度每升高10摄氏度,其使用寿命将下降50%。这一规律凸显了热沉材料在支撑半导体激光器向高功率、高集成度方向发展中的关键作用。
2025-07-09
-
全息术如何推动定量相位成像七十五年的演进与突破?
1948年,DennisGabor提出全息术概念,为光波前的定量描述提供了开创性解决方案。历经七十五年发展,基于全息术的定量相位成像已成为光学波前测量领域的核心工具,深刻影响着物理学、生物学与材料科学等多学科研究。从理论构想到实验应用,从光学干涉到数字重构,这一技术的演进脉络既体现了基础科学的突破逻辑,也彰显了跨学科融合的创新力量。
2025-07-08