太原理工大学研发新型拉曼分布式光纤传感系统,实现远程实时温度监测
分布式光纤传感技术在基础设施监测领域扮演着越来越重要的角色。近日,太原理工大学张明江教授课题组在《激光与光电子学进展》发表了一项突破性研究成果,该研究设计了一种新型的拉曼分布式光纤传感远程温度监测系统,为城市管道、输电线路、桥梁和水坝等基础设施的温度监测提供了一种高效、低成本的解决方案。
一、技术创新:4G无线传输模块集成
该系统的核心在于集成了双向无线数据传输技术,特别是4GDTU(数据传输单元)模块的应用,使得大规模分布式传感数据能够无线传输至远程控制中心。这一创新不仅提高了数据传输的可靠性和稳定性,还降低了工程应用中实时监测的成本,提升了监测控制的智能化水平。
二、系统特点:实时监测与双向控制
新型系统能够实现大规模、实时的温度监测和远程控制。通过光时域反射原理和拉曼散射效应,系统能够精确测量温度,并通过4GDTU模块将数据实时传输至远程监测端。远程控制中心可以稳定实时显示现场监测结果,并进行指令双向遥控和监测结果分析。
三、实验验证:高准确性与低丢包率
实验结果表明,该系统在温度监测中的误差范围为±1.0℃,符合拉曼分布式光纤系统的测温精度标准。同时,系统数据平均丢包率仅为0.38%,远低于5%的标准要求,证明了系统在无线远程监测中的数据可靠性,能够满足大量数据传输情况下的远程监测需求。
四、未来展望:5G技术的应用
随着5G通信技术的进一步发展,该系统将有望通过更高速率的无线网络传输提升数据传输效率和网络容量,实现更长距离的温度监测和更高精度的实时控制。这将为工业安全领域大型光纤监测项目提供更加实时和实用的监测解决方案。
五、研究团队简介
该研究由太原理工大学张明江教授课题组完成,团队成员包括秦磊、李健和张明江等。他们不仅在学术界有着丰富的研究成果,还在实际应用中取得了显著的成就,为光纤传感技术的发展和应用做出了重要贡献。
太原理工大学的这项研究不仅推动了拉曼分布式光纤传感技术的发展,也为基础设施的智能化监测提供了新的思路和工具。随着技术的不断成熟和应用,我们有理由相信,这种新型系统将在未来的工业安全领域发挥越来越重要的作用。
-
低密度等离子体棱镜压缩器取得突破,突破传统光学限制,赋能超高功率激光技术
激光技术的迅猛发展,持续推动着人类对极端物理现象的探索,而拍瓦级及更高功率的激光装置,更是解开高能物理、相对论光学等领域奥秘的关键工具。然而,传统激光脉冲压缩技术长期受限于光学元件的损伤阈值,成为制约激光功率提升的核心瓶颈。近日,美国密歇根大学、罗切斯特大学等机构的科研人员联合研发出基于低密度等离子体棱镜的新型脉冲压缩器,为突破这一限制带来革命性进展,相关成果发表于《HighPower Laser Scienceand Engineering》。
2025-08-18
-
从光斑到清晰成像,光学系统如何突破"模糊"极限?
当我们透过镜头观察世界时,那些清晰的图像背后,藏着光的衍射与数学模型的复杂博弈。为何遥远的恒星在望远镜中会变成光斑?光学系统如何传递图像的细节?从艾里斑到调制传递函数,这些关键概念正是解开"模糊"谜题的钥匙。
2025-08-18
-
粉末增材制造技术在掺铒石英光纤激光器中的应用研究
在光纤通信、激光加工及生物医疗等关键领域,高性能光纤激光器的需求持续攀升,而增益光纤作为其核心构成部件,其制造工艺直接决定器件的性能水平。传统制造方法虽能生产高质量增益光纤,但存在生产周期冗长、成本高昂及成分调控灵活性不足等显著局限。近期,PawelManiewski等人在《Optica》期刊发表的研究成果,提出了一种基于粉末增材制造的新型制备方案,为高性能增益光纤的研发开辟了全新路径。
2025-08-18
-
偏心仪在透镜及镜片加工中的应用解析
偏心仪在透镜及镜片加工领域中应用广泛,其核心作用在于通过精密检测与校准,确保光学元件的几何中心与光轴保持高度一致性,进而保障光学系统的成像质量与性能稳定性。具体应用如下:
2025-08-15