太原理工大学研发新型拉曼分布式光纤传感系统,实现远程实时温度监测
分布式光纤传感技术在基础设施监测领域扮演着越来越重要的角色。近日,太原理工大学张明江教授课题组在《激光与光电子学进展》发表了一项突破性研究成果,该研究设计了一种新型的拉曼分布式光纤传感远程温度监测系统,为城市管道、输电线路、桥梁和水坝等基础设施的温度监测提供了一种高效、低成本的解决方案。

一、技术创新:4G无线传输模块集成
该系统的核心在于集成了双向无线数据传输技术,特别是4GDTU(数据传输单元)模块的应用,使得大规模分布式传感数据能够无线传输至远程控制中心。这一创新不仅提高了数据传输的可靠性和稳定性,还降低了工程应用中实时监测的成本,提升了监测控制的智能化水平。
二、系统特点:实时监测与双向控制
新型系统能够实现大规模、实时的温度监测和远程控制。通过光时域反射原理和拉曼散射效应,系统能够精确测量温度,并通过4GDTU模块将数据实时传输至远程监测端。远程控制中心可以稳定实时显示现场监测结果,并进行指令双向遥控和监测结果分析。
三、实验验证:高准确性与低丢包率
实验结果表明,该系统在温度监测中的误差范围为±1.0℃,符合拉曼分布式光纤系统的测温精度标准。同时,系统数据平均丢包率仅为0.38%,远低于5%的标准要求,证明了系统在无线远程监测中的数据可靠性,能够满足大量数据传输情况下的远程监测需求。
四、未来展望:5G技术的应用
随着5G通信技术的进一步发展,该系统将有望通过更高速率的无线网络传输提升数据传输效率和网络容量,实现更长距离的温度监测和更高精度的实时控制。这将为工业安全领域大型光纤监测项目提供更加实时和实用的监测解决方案。
五、研究团队简介
该研究由太原理工大学张明江教授课题组完成,团队成员包括秦磊、李健和张明江等。他们不仅在学术界有着丰富的研究成果,还在实际应用中取得了显著的成就,为光纤传感技术的发展和应用做出了重要贡献。
太原理工大学的这项研究不仅推动了拉曼分布式光纤传感技术的发展,也为基础设施的智能化监测提供了新的思路和工具。随着技术的不断成熟和应用,我们有理由相信,这种新型系统将在未来的工业安全领域发挥越来越重要的作用。
-
光学传递函数(OTF)与调制传递函数(MTF)的核心特性及应用辨析
光学传递函数(OTF)与调制传递函数(MTF)是傅里叶光学在光学成像质量评估中的核心应用成果。二者的核心差异在于:OTF是包含幅度与相位信息的复数函数,追求对光学系统传递特性的全面描述;MTF是OTF的模值,是聚焦对比度传递的实数函数,具有简洁直观的实用价值。在实际应用中,MTF以其易量化、易解读的优势,成为工程实践中评估成像质量的主流指标;而OTF则以其完整性,为高精度光学系统的设计、优化及图像复原等领域提供不可或缺的理论支撑。
2026-01-06
-
工程光学设计的核心逻辑:像差并非越小越好!
“像差越小成像质量越优”是理论学习阶段形成的普遍认知,课本的教学导向与设计软件的优化逻辑,均指向MTF值提升、波前误差减小、光斑形态规整等单一目标。然而,当光学设计从理论层面走向工程实践,这一认知往往需要被重新审视。工程光学设计并非一场追求像差极限的竞赛,而是一门融合取舍智慧、风险管控与现实约束的工程艺术,其核心逻辑在于实现系统与现实条件的动态适配,而非固守单一维度的最优解。
2026-01-06
-
激光加工中光束整形技术的发展与应用探析
在工业制造向“高精度、高效率、高柔性”深度转型的当下,激光加工技术凭借非接触、低损耗、高可控的核心优势,已成为航空航天、电子制造、医疗设备等高端领域的关键支撑。而光束整形技术作为激光加工“精准化革命”的核心驱动力,通过对激光束空间分布、强度轮廓及相位信息的精准调控,打破了传统高斯光束的固有局限,实现了从“能加工”到“巧加工”的跨越式发展,为激光加工技术的升级迭代注入了关键动能。本文将系统探析光束整形技术的基础理论、核心价值、应用场景及发展趋势,为行业发展提供参考。
2026-01-06
-
中心偏差会影响近红外成像吗?高精密应用中的关键考量
近红外(NIR,NearInfrared,通常指700–1100nm)成像技术广泛应用于安防监控、车载辅助、生物医疗等领域。尽管近红外波段的光学特性与可见光存在差异,中心偏差对其成像质量的影响仍不容忽视——尤其在高分辨率、大孔径或精密测量等严苛应用场景中,这种影响可能直接导致系统性能失效。本文将从影响机制、敏感度分析、实际案例及解决方案等维度,系统解析中心偏差与近红外成像的关联。
2026-01-04
