【光学前沿】革命性太阳能激光技术:APACE项目为太空电力传输铺路
一个国际研究团队正在开发一项突破性技术,该技术能够将阳光直接转换成激光束,实现远距离电力传输。这项技术不仅能够支持卫星之间的电力传输,还有望实现从卫星到月球基地,甚至地球的电力输送。APACE项目,一个汇集了英国、意大利、德国和波兰研究人员的合作项目,正在实验室条件下开发这种激光器,并测试其在太空环境中的适用性。

光合作用的启示
APACE项目的灵感来源于自然界的光合作用,这是一种生物体将阳光转化为能量的过程。项目负责人,赫瑞瓦特大学光子学和量子科学研究所的教授埃里克·高格(ErikGauger)指出:“在太空中可持续地发电,而不依赖从地球发送的易腐烂部件,这是一个巨大的挑战。然而,生物体擅长自给自足和利用自组装。”这一理念的实现,将为太空任务带来新的可能性,减少对地球资源的依赖。
从细菌中提取采光机制
研究小组首先从特定类型的细菌中提取和研究天然的采光机制。这些细菌能够在极低光照条件下生存,它们具有专门的分子天线结构,可以捕获和引导几乎每一个光子。高格教授解释说:“普通的阳光通常太弱,无法直接为激光提供能量,但这些特殊的细菌通过其精心设计的光收集结构收集和引导阳光,效率极高。”
开发人工光收集器和激光材料
基于这些自然机制,团队将开发人工版本的光收集器和新的激光材料,这些材料可以与自然和人造光收集器一起使用。这些组件将组合成一种新型激光设备,并在越来越大的系统中进行测试。
可持续的有机平台
与传统的将阳光转化为电能的半导体太阳能电池板不同,APACE项目提出的生物启发系统建立在可持续的有机平台上,具有在太空中复制的潜力。这将允许直接向前分配电力,而无需依赖电中介。
太空站的电力解决方案
高格教授展望说:“如果我们的新技术可以在空间站上建造和使用,它可以帮助在当地发电,甚至可以提供使用红外激光束将电力发送到卫星或返回地球的途径。”这不仅能够为太空站提供电力,还能够支持未来的月球基地或火星任务。
研究人员预计将在三年内准备好他们的第一个原型进行测试。这项技术的成功不仅能够为全球空间机构提供动力,而且还将为地球上的无线电力传输和全球可持续能源解决方案开辟新途径。
APACE项目的开发标志着太阳能利用和电力传输技术的一个新纪元。通过模仿自然界的光合作用,这项技术有望实现太空中的自给自足,减少对地球资源的依赖,并为未来的太空探索和地球上的可持续能源解决方案提供新的思路。随着技术的不断进步,我们有理由相信,太阳能激光技术将为人类带来更加清洁、高效的能源未来。
-
硅光、光模块与CPO的关联及核心特性分析
硅光、光模块、CPO这些高频出现的技术术语,背后承载着数据传输效率突破的核心逻辑。从传统通信网络到新一代数据中心,光传输技术的每一次革新都离不开材料、结构与封装方式的突破。本文将带你走进光传输技术的核心圈层,揭秘硅光技术如何推动光模块从分立组装走向共封装时代,以及这条进化之路上的关键突破与未来方向。
2025-12-31
-
铋基钙钛矿展现强非线性光学响应,推动全光器件发展
近日,燕山大学与南开大学联合研究团队在无铅钙钛矿非线性光学材料领域取得重要突破。相关成果以《空间自相位调制铋基钙钛矿的强非线性响应及其全光应用》为题,发表于国际知名期刊Laser&PhotonicsReviews(2025,19(8):2401929)。该研究不仅系统揭示了有机–无机杂化铋基钙钛矿在可见光波段的优异三阶非线性光学性能,还成功演示了其在全光开关与全光二极管等关键光子器件中的实际应用潜力。
2025-12-31
-
光学三大核心元件:平面镜、凸透镜与凹透镜的原理及应用探析
从日常梳妆的镜面反射到航天探测的精密成像,从视力矫正的光学器具到芯片制造的光刻技术,光学元件已深度融入人类生产生活与尖端科技领域。平面镜、凸透镜、凹透镜作为光学系统的三大核心基石,其基于光的反射与折射规律的工作机制,构建了现代光学技术的基础框架。本文将系统阐述三者的物理原理、设计规范、应用场景及发展趋势,展现基础光学元件的科学价值与技术魅力。
2025-12-31
-
TriAngle激光束准直:一看就懂的高精度光学校准方案
激光在工业加工(切割、焊接)、医疗设备(激光手术仪)、科研实验等场景中,都需要“走得直、聚得准”。如果激光束跑偏、发散,要么加工出来的产品不合格,要么医疗操作有风险,实验数据也会出错。
传统的激光校准靠人工慢慢调,又费时间又容易出错,环境稍微变一点(比如温度、振动)就不准了。而TriAngle是专门解决这个问题的设备,能让激光校准变得简单、快速又精准。2025-12-30
