【光学前沿】革命性太阳能激光技术:APACE项目为太空电力传输铺路
一个国际研究团队正在开发一项突破性技术,该技术能够将阳光直接转换成激光束,实现远距离电力传输。这项技术不仅能够支持卫星之间的电力传输,还有望实现从卫星到月球基地,甚至地球的电力输送。APACE项目,一个汇集了英国、意大利、德国和波兰研究人员的合作项目,正在实验室条件下开发这种激光器,并测试其在太空环境中的适用性。

光合作用的启示
APACE项目的灵感来源于自然界的光合作用,这是一种生物体将阳光转化为能量的过程。项目负责人,赫瑞瓦特大学光子学和量子科学研究所的教授埃里克·高格(ErikGauger)指出:“在太空中可持续地发电,而不依赖从地球发送的易腐烂部件,这是一个巨大的挑战。然而,生物体擅长自给自足和利用自组装。”这一理念的实现,将为太空任务带来新的可能性,减少对地球资源的依赖。
从细菌中提取采光机制
研究小组首先从特定类型的细菌中提取和研究天然的采光机制。这些细菌能够在极低光照条件下生存,它们具有专门的分子天线结构,可以捕获和引导几乎每一个光子。高格教授解释说:“普通的阳光通常太弱,无法直接为激光提供能量,但这些特殊的细菌通过其精心设计的光收集结构收集和引导阳光,效率极高。”
开发人工光收集器和激光材料
基于这些自然机制,团队将开发人工版本的光收集器和新的激光材料,这些材料可以与自然和人造光收集器一起使用。这些组件将组合成一种新型激光设备,并在越来越大的系统中进行测试。
可持续的有机平台
与传统的将阳光转化为电能的半导体太阳能电池板不同,APACE项目提出的生物启发系统建立在可持续的有机平台上,具有在太空中复制的潜力。这将允许直接向前分配电力,而无需依赖电中介。
太空站的电力解决方案
高格教授展望说:“如果我们的新技术可以在空间站上建造和使用,它可以帮助在当地发电,甚至可以提供使用红外激光束将电力发送到卫星或返回地球的途径。”这不仅能够为太空站提供电力,还能够支持未来的月球基地或火星任务。
研究人员预计将在三年内准备好他们的第一个原型进行测试。这项技术的成功不仅能够为全球空间机构提供动力,而且还将为地球上的无线电力传输和全球可持续能源解决方案开辟新途径。
APACE项目的开发标志着太阳能利用和电力传输技术的一个新纪元。通过模仿自然界的光合作用,这项技术有望实现太空中的自给自足,减少对地球资源的依赖,并为未来的太空探索和地球上的可持续能源解决方案提供新的思路。随着技术的不断进步,我们有理由相信,太阳能激光技术将为人类带来更加清洁、高效的能源未来。
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
