【光学前沿】伯明翰大学新理论揭示光子本质与形状
英国伯明翰大学的科学家们提出了一项新理论,该理论以前所未有的细节探讨了光子的本质,并首次精确定义了单个光子的形状。这项研究不仅改变了人们对光与物质在量子层面相互作用的传统认知,而且为光—物质相互作用工程的应用奠定了坚实的理论基础。
光子与物质的相互作用
该理论揭示了光子如何由原子或分子发射,并受到周围环境的影响而呈现出特定形状。这种复杂的相互作用使得光在周围环境中存在和传播的可能性变得无限多样。然而,这种无限的可能性也使得构建相互作用模型变得异常困难,这是量子物理学家几十年来一直在努力解决的挑战。
模型构建与光子可视化
伯明翰大学的研究团队通过将这些可能性划分为不同的集合,构建了一个综合模型。该模型不仅描述了光子与发射体之间的相互作用,还描述了这种相互作用产生的能量如何传播到遥远的“远场”。同时,团队还通过计算生成了光子本身的可视化图像,这在物理学中是前所未有的。
研究意义与应用前景
这项研究为量子物理学和材料科学开辟了新的研究领域。通过准确描述光子与物质以及其他环境因素之间的相互作用,科学家可以设计出新的纳米光子技术,从而改变安全通信、病原体检测或分子层面化学反应控制的方式。环境的几何形状和光学特性对光子的发射方式有着深远影响,包括决定光子的形状、颜色,甚至其存在的可能性。
这项工作有助于加深对光与物质之间能量交换的理解,并更好地理解光是如何向周围和远距离环境辐射的。之前,这些信息中有很多被视为“噪声”,但现在,科学家可以理解并利用其中的大量信息。通过了解这一点,我们为设计光物质相互作用以供未来应用奠定了基础,例如更好的传感器、改进的光伏能源电池或量子计算等等。
-
MTF测试在医疗成像中的作用
在医疗成像领域,调制传递函数(MTF)测试是一种重要的工具,用于评估和提高成像设备的诊断准确性。以下是MTF测试在医疗成像中的具体应用及其对诊断准确性的帮助:
2025-01-15
-
水下光无线通信取得新突破!能否照亮深海通信的未来?
在深邃的海洋中,通信技术一直是人类探索和利用海洋资源的关键。近年来,水下光无线通信技术以其高带宽、低延迟等优势,逐渐成为水下通信领域的研究热点。本文将为您详细介绍水下光无线通信的最新进展,带您领略这一前沿技术的魅力。
2025-01-15
-
外国团队在CMOS试验原型生产线上实现电驱动砷化镓纳米脊激光二极管的单片制造
硅光子学是一项快速发展的技术,有望彻底改变通信、计算和感知世界的方式。然而,缺乏高度可扩展的原生互补金属氧化物半导体(CMOS)集成光源一直是其广泛应用的主要障碍。尽管在硅上混合和异质集成III-V族光源方面已取得显著进展,但通过直接外延生长III-V族材料实现单片集成,仍然是成本效益最高的片上光源解决方案。
2025-01-14
-
深度学习计算成像:数据驱动与物理驱动的较量与融合
相位恢复是计算成像中的一个经典逆问题,其目标是从强度测量中恢复光波相位,进而定量分析样品的生物物理特性。这一技术在生物医学成像、自适应光学、相干衍射成像和精密测量等多个领域都有着广泛的应用。近年来,深度学习方法为相位恢复带来了新的活力,数据驱动和物理驱动成为实现这一目标的两种主要策略。
2025-01-14