【光学前沿】中山大学研究团队突破大气散射光学成像极限
在光学成像技术领域,大气散射介质如雾和霾一直是影响图像质量和远距离目标识别的难题。近日,中山大学刘忆琨副教授领导的研究小组在《Advanced Photonics Nexus》2024年第6期上发表了相关的的研究论文,提出了一种全新的物理模型,有望突破这一技术瓶颈。
光学成像技术的重要性与挑战
光学成像技术在遥感、天文学、军事监控和环境监测等多个领域扮演着关键角色。然而,光线在通过大气散射介质时,会受到空气中颗粒物的干扰,导致图像对比度和清晰度大幅下降,影响远距离目标的观测和识别。因此,提高在恶劣天气条件下光学成像系统的性能,是光学成像领域亟待解决的挑战。
全新物理模型的提出
刘忆琨副教授的研究小组提出了一种全新的大气散射介质物理模型,该模型全面考虑了光在大气中的传输行为、目标特征、成像系统的光学特性以及数字信号处理对图像的影响。模型中引入了“感知因子”,用于定量描述成像系统的信噪比(SNR)与人眼感知系统之间的关系,并结合信干比(SIR)评估数字化过程中信息的损失情况。
实验验证与结果
为了验证模型的准确性,研究人员设计了两组实验:一组在实验室控制的雾仓中进行,另一组在户外自然雾霾条件下进行。实验结果显示,新模型能够准确预测大气散射条件下的成像极限,与实际测量数据高度吻合。
模型的应用前景
该研究提出的物理模型不仅可以精确量化系统的角分辨率,还能动态评估大气散射条件下光学成像的极限。模型的广泛适应性使其适用于静态或动态大气环境的复杂介质系统,为理解不同环境下的成像效果提供了理论支持。此外,该模型有望应用于未来的成像系统设计和复杂环境中的成像效果预测,尤其在国防、环境监测和天文学等领域具有广泛的应用潜力。
研究团队表示,未来的工作将重点探讨模型在更多复杂介质条件下的适用性,并进一步优化模型的参数以提升其实用性。这一研究成果不仅为光学成像技术的发展提供了新的理论基础,也为相关领域的实际应用提供了强有力的工具。
-
超精密光学镜片制造工艺解析:从基材处理到原子级加工的技术体系
超精密光学镜片作为现代高端装备的核心光学元件,广泛应用于天文观测、微观探测、半导体制造等关键领域,其光学性能直接决定了相关设备的功能精度与技术极限。这类镜片的制造并非传统意义上的机械加工,而是融合材料科学、精密控制与检测技术的系统性工程。在满足光学基材各项性能指标的基础上,需通过多阶段、多技术协同的加工流程,实现对材料表面的原子级精度调控。本文将系统梳理超精密光学镜片的制造技术体系,剖析传统与新兴加工技术的原理、特性及应用场景,并阐述各技术在加工闭环中的协同作用。
2025-08-27
-
激光晶体:激光技术发展的核心支撑介质
在现代科技体系中,激光技术已成为推动工业制造、医疗健康、科学研究及国防安全等领域革新的关键力量。激光晶体作为激光发生器的核心功能介质,其物理化学特性直接决定激光输出的波长、功率、效率及光束质量,是保障激光技术性能与应用拓展的基础。当前,激光晶体主要分为离子掺杂型、非线性光学型及特殊功能型三大类别,各类晶体基于独特的结构与性能,在不同应用场景中发挥不可替代的作用
2025-08-27
-
光子学技术在心血管疾病诊疗领域的创新应用与发展展望
心血管疾病(CardiovascularDisease,CVD)作为全球首要致死病因,每年导致约2000万人死亡,其疾病谱涵盖冠状动脉疾病、心肌梗死、脑卒中、心律失常及心力衰竭等多种病症,对全球公共卫生体系构成严峻挑战。长期以来,计算机断层扫描(ComputedTomography,CT)、血管造影术等传统光子学技术虽为CVD的诊断与治疗提供了重要支撑,但受限于侵入性较强、功能信息获取有限、实时监测能力不足等固有短板,难以满足临床对精准化、无创化诊疗的需求。近年来,以光声成像、光学可穿戴传感、光动力疗法为代表的新兴光子学技术快速发展,通过融合光学原理与医学诊疗需求,在提升CVD诊断精度、优化治疗方案、拓展监测场景等方面展现出显著优势,正逐步推动心血管医学向更高效、更精准、更可及的方向变革。
2025-08-27
-
光纤激光器的核心原理与主流腔型技术分析
在现代激光技术体系中,光纤激光器凭借高功率输出、优异光束质量及稳定运行特性,已在工业制造、光纤通信、医疗诊断等关键领域实现广泛应用。其技术优势的形成,源于以稀土掺杂光纤为核心的增益介质设计及多元化谐振腔结构的创新。本文基于光纤激光器的工作机制,系统阐述其核心原理,并对四类主流谐振腔的技术特征与应用场景展开深入分析。
2025-08-26