【光学前沿】中山大学研究团队突破大气散射光学成像极限
在光学成像技术领域,大气散射介质如雾和霾一直是影响图像质量和远距离目标识别的难题。近日,中山大学刘忆琨副教授领导的研究小组在《Advanced Photonics Nexus》2024年第6期上发表了相关的的研究论文,提出了一种全新的物理模型,有望突破这一技术瓶颈。
光学成像技术的重要性与挑战
光学成像技术在遥感、天文学、军事监控和环境监测等多个领域扮演着关键角色。然而,光线在通过大气散射介质时,会受到空气中颗粒物的干扰,导致图像对比度和清晰度大幅下降,影响远距离目标的观测和识别。因此,提高在恶劣天气条件下光学成像系统的性能,是光学成像领域亟待解决的挑战。
全新物理模型的提出
刘忆琨副教授的研究小组提出了一种全新的大气散射介质物理模型,该模型全面考虑了光在大气中的传输行为、目标特征、成像系统的光学特性以及数字信号处理对图像的影响。模型中引入了“感知因子”,用于定量描述成像系统的信噪比(SNR)与人眼感知系统之间的关系,并结合信干比(SIR)评估数字化过程中信息的损失情况。
实验验证与结果
为了验证模型的准确性,研究人员设计了两组实验:一组在实验室控制的雾仓中进行,另一组在户外自然雾霾条件下进行。实验结果显示,新模型能够准确预测大气散射条件下的成像极限,与实际测量数据高度吻合。
模型的应用前景
该研究提出的物理模型不仅可以精确量化系统的角分辨率,还能动态评估大气散射条件下光学成像的极限。模型的广泛适应性使其适用于静态或动态大气环境的复杂介质系统,为理解不同环境下的成像效果提供了理论支持。此外,该模型有望应用于未来的成像系统设计和复杂环境中的成像效果预测,尤其在国防、环境监测和天文学等领域具有广泛的应用潜力。
研究团队表示,未来的工作将重点探讨模型在更多复杂介质条件下的适用性,并进一步优化模型的参数以提升其实用性。这一研究成果不仅为光学成像技术的发展提供了新的理论基础,也为相关领域的实际应用提供了强有力的工具。
-
散射矩阵层析成像技术:突破复杂介质限制的深层高分辨率光学成像新范式
近日,美国南加州大学ChiaWei(Wade)Hsu教授团队联合浙江大学研究人员,提出一种名为“散射矩阵层析成像(ScatteringMatrixTomography,SMT)”的创新光学成像技术,成功破解了复杂散射介质下深层成像的难题。相关研究成果发表于国际顶尖光学期刊《AdvancedPhotonics》。
2025-09-18
-
运送一台EUV光刻机,比送宇航员上太空还难?背后藏着纳米光学的“生死考验”
在芯片产业的版图里,EUV光刻机是当之无愧的“皇冠明珠”——一台售价超1.5亿美元,全球每年仅能产出数十台,却支撑着7纳米以下先进制程芯片的生产。可很少有人知道,这台“精密神器”从荷兰ASML工厂出发,到抵达全球各地芯片厂的这段旅程,比护送宇航员进入太空还要严苛。毕竟,宇航员能在太空中适应微小重力波动,而EUV光刻机却连0.001G的震动都“承受不起”,根源就藏在那些中频误差<0.3nm的光学镜片里。
2025-09-18
-
3D打印技术如何驱动功能性光学器件制造革新及应用拓展
传统制造工艺正面临前所未有的技术瓶颈——先进光学器件对三维结构复杂性与多材料精准分布的需求,已超出切削、注塑等传统制造手段的加工范畴,成为制约光学技术在成像、传感、显示等领域突破的核心障碍。增材制造(又称3D打印)技术凭借“分层制造、逐层叠加”的核心原理,为功能性光学器件的创新研发提供了全新技术路径。从纳米级微透镜到宏观光学系统,从单一材料结构到多材料复合器件,3D打印技术正逐步打破传统光学制造的边界,推动光学器件产业进入“设计驱动制造”的全新发展阶段。
2025-09-18
-
警惕“100倍变焦”宣传陷阱,光学与数字变焦的技术解析及选购指南
在选购相机、智能手机或摄像机等影像设备时,厂商所宣传的“50倍超级变焦”“100倍高清变焦”常成为核心卖点,易让消费者产生“高倍变焦即优质成像”的认知。然而实际使用中,部分高倍变焦功能的成像效果与预期存在显著差距,其根源在于“光学变焦”与“数字变焦”的本质差异被混淆。本文将从技术原理、核心区别、选购策略及实用技巧四方面,系统解析两种变焦技术,助力消费者避开选购陷阱,提升影像创作质量。
2025-09-18