【光学前沿】中山大学研究团队突破大气散射光学成像极限
在光学成像技术领域,大气散射介质如雾和霾一直是影响图像质量和远距离目标识别的难题。近日,中山大学刘忆琨副教授领导的研究小组在《Advanced Photonics Nexus》2024年第6期上发表了相关的的研究论文,提出了一种全新的物理模型,有望突破这一技术瓶颈。

光学成像技术的重要性与挑战
光学成像技术在遥感、天文学、军事监控和环境监测等多个领域扮演着关键角色。然而,光线在通过大气散射介质时,会受到空气中颗粒物的干扰,导致图像对比度和清晰度大幅下降,影响远距离目标的观测和识别。因此,提高在恶劣天气条件下光学成像系统的性能,是光学成像领域亟待解决的挑战。
全新物理模型的提出
刘忆琨副教授的研究小组提出了一种全新的大气散射介质物理模型,该模型全面考虑了光在大气中的传输行为、目标特征、成像系统的光学特性以及数字信号处理对图像的影响。模型中引入了“感知因子”,用于定量描述成像系统的信噪比(SNR)与人眼感知系统之间的关系,并结合信干比(SIR)评估数字化过程中信息的损失情况。
实验验证与结果
为了验证模型的准确性,研究人员设计了两组实验:一组在实验室控制的雾仓中进行,另一组在户外自然雾霾条件下进行。实验结果显示,新模型能够准确预测大气散射条件下的成像极限,与实际测量数据高度吻合。
模型的应用前景
该研究提出的物理模型不仅可以精确量化系统的角分辨率,还能动态评估大气散射条件下光学成像的极限。模型的广泛适应性使其适用于静态或动态大气环境的复杂介质系统,为理解不同环境下的成像效果提供了理论支持。此外,该模型有望应用于未来的成像系统设计和复杂环境中的成像效果预测,尤其在国防、环境监测和天文学等领域具有广泛的应用潜力。
研究团队表示,未来的工作将重点探讨模型在更多复杂介质条件下的适用性,并进一步优化模型的参数以提升其实用性。这一研究成果不仅为光学成像技术的发展提供了新的理论基础,也为相关领域的实际应用提供了强有力的工具。
-
光学传递函数(OTF)与调制传递函数(MTF)的核心特性及应用辨析
光学传递函数(OTF)与调制传递函数(MTF)是傅里叶光学在光学成像质量评估中的核心应用成果。二者的核心差异在于:OTF是包含幅度与相位信息的复数函数,追求对光学系统传递特性的全面描述;MTF是OTF的模值,是聚焦对比度传递的实数函数,具有简洁直观的实用价值。在实际应用中,MTF以其易量化、易解读的优势,成为工程实践中评估成像质量的主流指标;而OTF则以其完整性,为高精度光学系统的设计、优化及图像复原等领域提供不可或缺的理论支撑。
2026-01-06
-
工程光学设计的核心逻辑:像差并非越小越好!
“像差越小成像质量越优”是理论学习阶段形成的普遍认知,课本的教学导向与设计软件的优化逻辑,均指向MTF值提升、波前误差减小、光斑形态规整等单一目标。然而,当光学设计从理论层面走向工程实践,这一认知往往需要被重新审视。工程光学设计并非一场追求像差极限的竞赛,而是一门融合取舍智慧、风险管控与现实约束的工程艺术,其核心逻辑在于实现系统与现实条件的动态适配,而非固守单一维度的最优解。
2026-01-06
-
激光加工中光束整形技术的发展与应用探析
在工业制造向“高精度、高效率、高柔性”深度转型的当下,激光加工技术凭借非接触、低损耗、高可控的核心优势,已成为航空航天、电子制造、医疗设备等高端领域的关键支撑。而光束整形技术作为激光加工“精准化革命”的核心驱动力,通过对激光束空间分布、强度轮廓及相位信息的精准调控,打破了传统高斯光束的固有局限,实现了从“能加工”到“巧加工”的跨越式发展,为激光加工技术的升级迭代注入了关键动能。本文将系统探析光束整形技术的基础理论、核心价值、应用场景及发展趋势,为行业发展提供参考。
2026-01-06
-
中心偏差会影响近红外成像吗?高精密应用中的关键考量
近红外(NIR,NearInfrared,通常指700–1100nm)成像技术广泛应用于安防监控、车载辅助、生物医疗等领域。尽管近红外波段的光学特性与可见光存在差异,中心偏差对其成像质量的影响仍不容忽视——尤其在高分辨率、大孔径或精密测量等严苛应用场景中,这种影响可能直接导致系统性能失效。本文将从影响机制、敏感度分析、实际案例及解决方案等维度,系统解析中心偏差与近红外成像的关联。
2026-01-04
